OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 5 — Dec. 1, 2010
  • pp: 1284–1301

Fundamentals of negative refractive index optical trapping: forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz-Mie theory

Leonardo A. Ambrosio and Hugo E. Hernández-Figueroa  »View Author Affiliations


Biomedical Optics Express, Vol. 1, Issue 5, pp. 1284-1301 (2010)
http://dx.doi.org/10.1364/BOE.1.001284


View Full Text Article

Enhanced HTML    Acrobat PDF (2219 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on the generalized Lorenz-Mie theory (GLMT), this paper reveals, for the first time in the literature, the principal characteristics of the optical forces and radiation pressure cross-sections exerted on homogeneous, linear, isotropic and spherical hypothetical negative refractive index (NRI) particles under the influence of focused Gaussian beams in the Mie regime. Starting with ray optics considerations, the analysis is then extended through calculating the Mie coefficients and the beam-shape coefficients for incident focused Gaussian beams. Results reveal new and interesting trapping properties which are not observed for commonly positive refractive index particles and, in this way, new potential applications in biomedical optics can be devised.

© 2010 OSA

OCIS Codes
(080.0080) Geometric optics : Geometric optics
(290.4020) Scattering : Mie theory
(350.3618) Other areas of optics : Left-handed materials
(160.3918) Materials : Metamaterials
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Traps, Manipulation, and Tracking

History
Original Manuscript: August 6, 2010
Revised Manuscript: October 13, 2010
Manuscript Accepted: October 17, 2010
Published: November 4, 2010

Citation
Leonardo A. Ambrosio and Hugo E. Hernández-Figueroa, "Fundamentals of negative refractive index optical trapping: forces and radiation pressures exerted by focused Gaussian beams using the generalized Lorenz-Mie theory," Biomed. Opt. Express 1, 1284-1301 (2010)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-5-1284


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987). [PubMed]
  2. M. W. Berns, W. H. Wright, B. J. Tromberg, G. A. Profeta, J. J. Andrews, and R. J. Walter, “Use of a laser-induced optical force trap to study chromosome movement on the mitotic spindle,” in Proceedings of the National Academy of Science of the United States of America86, (1989), pp. 7914–7918.
  3. S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules,” Science 271(5250), 795–799 (1996). [PubMed]
  4. G. D. Wright, J. Arlt, W. C. K. Poon, and N. D. Read, “Experimentally manipulating fungi with optical tweezers,” Mycoscience 48, 15–19 (2007).
  5. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” in Proceedings of the National Academy of Science of the United States of America94, (1997), pp. 4853–4860.
  6. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004). [PubMed]
  7. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004). [PubMed]
  8. L. A. Ambrosio and H. E. Hernández-Figueroa, “Inversion of gradient forces for high refractive index particles in optical trapping,” Opt. Express 18(6), 5802–5808 (2010). [PubMed]
  9. V. G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ,” Sov. Phys. Usp. 4, 509–514 (1968).
  10. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000). [PubMed]
  11. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [PubMed]
  12. N. Engheta and R. Ziolkowski, “A positive future for double-negative metamaterials,” IEEE Trans. Microw. Theory Tech. 53(4), 1535–1556 (2005).
  13. N. Engheta and R. Ziolkowski, Metamaterials – Physics and Engineering Explorations (IEEE press, Wiley-Interscience, John Wiley & Sons, 2006).
  14. C. Caloz and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications (IEEE press, Wiley-Interscience, John Wiley & Sons, 2006).
  15. L. A. Ambrosio and H. E. Hernández-Figueroa, “Trapping double negative particles in the ray optics regime using optical tweezers with focused beams,” Opt. Express 17(24), 21918–21924 (2009). [PubMed]
  16. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61(2), 569–582 (1992). [PubMed]
  17. A. B. Stilgoe, T. A. Nieminen, G. Knöener, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “The effect of Mie resonances on trapping in optical tweezers,” Opt. Express 16(19), 15039–15051 (2008). [PubMed]
  18. Y. Hu, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Antireflection coating for improved optical trapping,” J. Appl. Phys. 103, 093119 (2008).
  19. G. Mie, “Beiträge zur Optik Trüber Medien, Speziell Kolloidaler Metallösungen,” Ann. Phys. 25, 377–445 (1908).
  20. G. Gouesbet and G. Gréhan, “Sur la généralisation de la théorie de Lorenz-Mie,” J. Opt. (Paris) 13, 97–103 (1982).
  21. B. Maheu, G. Gouesbet, and G. Gréhan, “A concise presentation of the generalized Lorenz-Mie theory for arbitrary incident profile,” J. Opt. (Paris) 19, 59–67 (1988).
  22. G. Gouesbet, G. Gréhan, and B. Maheu, “Expressions to compute the coefficients gnm in the generalized Lorenz-Mie theory using finite series,” J. Opt. (Paris) 19, 35–48 (1988).
  23. C. F. Bohren, and D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, John Wiley & Sons, 1983).
  24. G. Gouesbet, G. Gréhan, and B. Maheu, “Localized interpretation to compute all the coefficients gnm in the generalized Lorenz-Mie theory,” J. Opt. Soc. Am. A 7, 998–1007 (1990).
  25. K. F. Ren, G. Gouesbet, and G. Gréhan, “Integral localized approximation in generalized lorenz-mie theory,” Appl. Opt. 37(19), 4218–4225 (1998). [PubMed]
  26. G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. I. On-axis beams,” J. Opt. Soc. Am. A 11, 2503–2515 (1994).
  27. G. Gouesbet and J. A. Lock, “Rigorous justification of the localized approximation to the beam-shape coefficients in generalized Lorenz-Mie theory. II. Off-axis beams,” J. Opt. Soc. Am. A 11, 2516–2525 (1994).
  28. H. Polaert, G. Gréhan, and G. Gouesbet, “Forces and torques exerted on a multilayered spherical particle by a focused Gaussian beam,” Opt. Commun. 155, 169–179 (1998).
  29. K. F. Ren, G. Gréhan, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108, 343–354 (1994).
  30. K. F. Ren, G. Gréhan, and G. Gouesbet, “Symmetry relations in generalized Lorenz-Mie theory,” J. Opt. Soc. Am. A 11, 1812–1817 (1994).
  31. A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
  32. A. Ashkin and J. M. Dziedzic, “Stability of optical levitation by radiation pressure,” Appl. Phys. Lett. 24, 586–588 (1974).
  33. A. Ashkin and J. M. Dziedzic, “Optical levitation in high vacuum,” Appl. Phys. Lett. 28, 333–335 (1976).
  34. A. Ashkin and J. M. Dziedzic, “Feedback stabilization of optically levitated particles,” Appl. Phys. Lett. 30, 202–204 (1977).
  35. A. Ashkin and J. M. Dziedzic, “Observation of light scattering from nonspherical particles using optical levitation,” Appl. Opt. 19(5), 660–668 (1980). [PubMed]
  36. K. R. Fen, Diffusion des Faisceaux Feuille Laser par une Particule Sphérique et Applications aux Ecoulements Diphasiques (Ph.D thesis, Faculté des Sciences de L’Université de Rouen, 1995).
  37. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited