OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 5 — Dec. 1, 2010
  • pp: 1302–1308

Fluorescence lifetime biosensing with DNA microarrays and a CMOS-SPAD imager

Gerard Giraud, Holger Schulze, Day-Uei Li, Till T. Bachmann, Jason Crain, David Tyndall, Justin Richardson, Richard Walker, David Stoppa, Edoardo Charbon, Robert Henderson, and Jochen Arlt  »View Author Affiliations


Biomedical Optics Express, Vol. 1, Issue 5, pp. 1302-1308 (2010)
http://dx.doi.org/10.1364/BOE.1.001302


View Full Text Article

Enhanced HTML    Acrobat PDF (921 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Fluorescence lifetime of dye molecules is a sensitive reporter on local microenvironment which is generally independent of fluorophores concentration and can be used as a means of discrimination between molecules with spectrally overlapping emission. It is therefore a potentially powerful multiplexed detection modality in biosensing but requires extremely low light level operation typical of biological analyte concentrations, long data acquisition periods and on-chip processing capability to realize these advantages. We report here fluorescence lifetime data obtained using a CMOS-SPAD imager in conjunction with DNA microarrays and TIRF excitation geometry. This enables acquisition of single photon arrival time histograms for a 320 pixel FLIM map within less than 26 seconds exposure time. From this, we resolve distinct lifetime signatures corresponding to dye-labelled HCV and quantum-dot-labelled HCMV nucleic acid targets at concentrations as low as 10 nM.

© 2010 OSA

OCIS Codes
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3650) Medical optics and biotechnology : Lifetime-based sensing
(280.1415) Remote sensing and sensors : Biological sensing and sensors

ToC Category:
Biosensors and Molecular Diagnostics

History
Original Manuscript: August 10, 2010
Revised Manuscript: September 12, 2010
Manuscript Accepted: October 30, 2010
Published: November 4, 2010

Citation
Gerard Giraud, Holger Schulze, Day-Uei Li, Till T. Bachmann, Jason Crain, David Tyndall, Justin Richardson, Richard Walker, David Stoppa, Edoardo Charbon, Robert Henderson, and Jochen Arlt, "Fluorescence lifetime biosensing with DNA microarrays and a CMOS-SPAD imager," Biomed. Opt. Express 1, 1302-1308 (2010)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-5-1302


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Situma, M. Hashimoto, and S. A. Soper, “Merging microfluidics with microarray-based bioassays,” Biomol. Eng. 23(5), 213–231 (2006). [CrossRef] [PubMed]
  2. J. Petrik, “Diagnostic applications of microarrays,” Transfus. Med. 16(4), 233–247 (2006). [CrossRef] [PubMed]
  3. M. Schäferling and S. Nagl, “Optical technologies for the read out and quality control of DNA and protein microarrays,” Anal. Bioanal. Chem. 385(3), 500–517 (2006). [CrossRef] [PubMed]
  4. S. Nagl, M. Schaeferling, and O. S. Wolfbeis, “Fluorescence analysis in microarray technology,” Mikrochim. Acta 151(1-2), 1–21 (2005). [CrossRef]
  5. G. Giraud, H. Schulze, T. T. Bachmann, C. J. Campbell, A. R. Mount, P. Ghazal, M. R. Khondoker, A. J. Ross, S. W. J. Ember, I. Ciani, C. Tlili, A. J. Walton, J. G. Terry, and J. Crain, “Fluorescence lifetime imaging of quantum dot labeled DNA microarrays,” Int. J. Mol. Sci. 10(4), 1930–1941 (2009). [CrossRef] [PubMed]
  6. G. Valentini, C. D’Andrea, D. Comelli, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, C. Battaglia, C. Consolandi, G. Salani, L. Rossi-Bernardi, and G. De Bellis, “Time-resolved DNA-microarray reading by an intensified CCD for ultimate sensitivity,” Opt. Lett. 25(22), 1648–1650 (2000). [CrossRef] [PubMed]
  7. M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev. 110(5), 2641–2684 (2010). [CrossRef] [PubMed]
  8. J. R. Lakowicz, H. Szmacinski, K. Nowaczyk, K. W. Berndt, and M. Johnson, “Fluorescence lifetime imaging,” Anal. Biochem. 202(2), 316–330 (1992). [CrossRef] [PubMed]
  9. A. Esposito, H. C. Gerritsen, and F. S. Wouters, “Optimizing frequency-domain fluorescence lifetime sensing for high-throughput applications: photon economy and acquisition speed,” J. Opt. Soc. Am. A 24(10), 3261–3273 (2007). [CrossRef] [PubMed]
  10. K. Suhling, P. M. W. French, and D. Phillips, “Time-resolved fluorescence microscopy,” Photochem. Photobiol. Sci. 4(1), 13–22 (2005). [CrossRef] [PubMed]
  11. X. Michalet, R. A. Colyer, J. Antelman, O. H. W. Siegmund, A. Tremsin, J. V. Vallerga, and S. Weiss, “Single-quantum dot imaging with a photon counting camera,” Curr. Pharm. Biotechnol. 10(5), 543–557 (2009). [CrossRef] [PubMed]
  12. J. Richardson, R. Walker, L. Grant, D. Stoppa, F. Borghetti, E. Charbon, M. Gersbach, and R. K. Henderson, "A 32x32 50ps resolution 10 bit time to digital converter array in 130nm CMOS for time correlated imaging," in Proceedings of IEEE 2009 Custom Integrated Circuits Conference (IEEE, New York, 2009), pp. 77–80.
  13. D. E. Schwartz, E. Charbon, and K. L. Shepard, “A single-photon avalanche diode array for fluorescence lifetime imaging microscopy,” IEEE J. Solid-state Circuits 43(11), 2546–2557 (2008). [CrossRef]
  14. D. E. Schwartz, P. Gong, and K. L. Shepard, “Time-resolved Förster-resonance-energy-transfer DNA assay on an active CMOS microarray,” Biosens. Bioelectron. 24(3), 383–390 (2008). [CrossRef] [PubMed]
  15. D. U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, and R. Henderson, “Real-time fluorescence lifetime imaging system with a 32 × 32 013μm CMOS low dark-count single-photon avalanche diode array,” Opt. Express 18(10), 10257–10269 (2010). [CrossRef] [PubMed]
  16. C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 x 128 Single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-state Circuits 43(12), 2977–2989 (2008). [CrossRef]
  17. A. Al Salman, A. Tortschanoff, G. Van der Zwan, F. van Mourik, and M. Chergui, “A model for the multi-exponential excited-state decay of CdSe nanocrystals,” Chem. Phys. 357(1-3), 96–101 (2009). [CrossRef]
  18. G. Giraud, H. Schulze, T. T. Bachmann, C. J. Campbell, A. R. Mount, P. Ghazal, M. R. Khondoker, S. W. J. Ember, I. Ciani, C. Tlili, A. J. Walton, J. G. Terry, and J. Crain, “Solution state hybridization detection using time-resolved fluorescence anisotropy of quantum dot-DNA bioconjugates,” Chem. Phys. Lett. 484(4-6), 309–314 (2010). [CrossRef]
  19. S. Laptenok, K. M. Mullen, J. W. Borst, I. H. M. van Stokkum, V. V. Apanasovich, and A. Visser, “Fluorescence Lifetime Imaging Microscopy (FLIM) data analysis with TIMP,” J. Stat. Softw. 18, 18 (2007).
  20. S. Donati, G. Martini, and M. Norgia, “Microconcentrators to recover fill-factor in image photodetectors with pixel on-board processing circuits,” Opt. Express 15(26), 18066–18075 (2007). [CrossRef] [PubMed]
  21. M. Gersbach, Single-photon detector arrays for time-resolved fluorescence imaging (Thesis, Ecole Polytechnique Federale de Lausanne, Lausanne, 2009).
  22. D. U. Li, B. Rae, R. Andrews, J. Arlt, and R. Henderson, “Hardware implementation algorithm and error analysis of high-speed fluorescence lifetime sensing systems using center-of-mass method,” J. Biomed. Opt. 15(1), 017006 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited