OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 5 — Dec. 1, 2010
  • pp: 1309–1319

High-speed spectral domain optical coherence tomography using non-uniform fast Fourier transform

Kenny K. H. Chan and Shuo Tang  »View Author Affiliations

Biomedical Optics Express, Vol. 1, Issue 5, pp. 1309-1319 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1164 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The useful imaging range in spectral domain optical coherence tomography (SD-OCT) is often limited by the depth dependent sensitivity fall-off. Processing SD-OCT data with the non-uniform fast Fourier transform (NFFT) can improve the sensitivity fall-off at maximum depth by greater than 5dB concurrently with a 30 fold decrease in processing time compared to the fast Fourier transform with cubic spline interpolation method. NFFT can also improve local signal to noise ratio (SNR) and reduce image artifacts introduced in post-processing. Combined with parallel processing, NFFT is shown to have the ability to process up to 90k A-lines per second. High-speed SD-OCT imaging is demonstrated at camera-limited 100 frames per second on an ex-vivo squid eye.

© 2010 OSA

OCIS Codes
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(070.2025) Fourier optics and signal processing : Discrete optical signal processing
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
Optical Coherence Tomography

Original Manuscript: September 13, 2010
Revised Manuscript: October 29, 2010
Manuscript Accepted: October 30, 2010
Published: November 4, 2010

Kenny K. H. Chan and Shuo Tang, "High-speed spectral domain optical coherence tomography using non-uniform fast Fourier transform," Biomed. Opt. Express 1, 1309-1319 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Hu and A. M. Rollins, “Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer,” Opt. Lett. 32(24), 3525–3527 (2007). [PubMed]
  2. Y. Zhang, X. Li, L. Wei, K. Wang, Z. Ding, and G. Shi, “Time-domain interpolation for Fourier-domain optical coherence tomography,” Opt. Lett. 34(12), 1849–1851 (2009). [PubMed]
  3. K. Wang, Z. Ding, T. Wu, C. Wang, J. Meng, M. Chen, and L. Xu, “Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system,” Opt. Express 17(14), 12121–12131 (2009). [PubMed]
  4. G. Hausler and M. W. Lindner, “Coherence radar and spectral radar – new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
  5. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004). [PubMed]
  6. G. Liu, J. Zhang, L. Yu, T. Xie, and Z. Chen, “Real-time polarization-sensitive optical coherence tomography data processing with parallel computing,” Appl. Opt. 48(32), 6365–6370 (2009). [PubMed]
  7. E. Maeland, “On the comparison of interpolation methods,” IEEE Trans. Med. Imaging 7(3), 213–217 (1988). [PubMed]
  8. H. Hou and H. C. Andrews, “Cubic splines for image interpolation and digital filtering,” IEEE Trans. Acoust. Speech Signal Process. 26(6), 508–516 (1978).
  9. G. E. Sarty, R. Bennett, and R. W. Cox, “Direct reconstruction of non-Cartesian k-space data using a nonuniform fast Fourier transform,” Magn. Reson. Med. 45(5), 908–915 (2001). [PubMed]
  10. S. De Francesco and A. M. F. da Silva, “Efficient NUFFT-based direct Fourier algorithm for fan beam CT reconstruction,” Proc. SPIE 5370, 666–677 (2004).
  11. M. M. Bronstein, A. M. Bronstein, M. Zibulevsky, and H. Azhari, “Reconstruction in diffraction ultrasound tomography using nonuniform FFT,” IEEE Trans. Med. Imaging 21(11), 1395–1401 (2002). [PubMed]
  12. A. Dutt and V. Rokhlin, “Fast Fourier transforms for nonequispaced data,” SIAM J. Sci. Comput. 14(6), 1368–1393 (1993).
  13. J. Lee and L. Greengard, “The type 3 nonuniform FFT and its application,” J. Comput. Phys. 206(iss. 1), 1–5 (2005).
  14. J. A. Fessler and B. P. Sutton, “Nonuniform fast Fourier transforms using min-max interpolation,” IEEE Trans. Signal Process. 51(2), 560–574 (2003).
  15. L. Greengard and J. Lee, “Accelerating the Nonuniform Fast Fourier Transform,” SIAM Rev. 46(3), 443–454 (2004).
  16. D. Potts, G. Steidl, and M. Tasche, “Fast Fourier transforms for nonequispaced data: a tutorial,” in Modern Sampling Theory: Mathematics and Applications, J.J.Benedetto and P.Ferreira, eds. (Springer, 2001), Chap. 12, pp. 249–274.
  17. A. J. W. Duijndam and M. A. Schonewille, “Nonuniform fast Fourier transform,” Geophys. 64, 539–551 (1999).
  18. Y. Rolain, J. Schoukens, and G. Vandersteen, ““Signal Reconstruction for Non-Equidistant Finite Length Sample Sets: A “KIS” Approach,” IEEE Trans. Instrum. Meas. 47(5), 1046–1052 (1998).
  19. C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, “Spectral resolution and sampling issues in Fourier-transform spectral interferometry,” J. Opt. Soc. Am. B 17, 1795–1802 (2000).
  20. P. Thevenaz, T. Blu, and M. Unser, Handbook of Medical Imaging (Academic Press, 2000), Chap. 25.
  21. M. Choma, M. V. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003). [PubMed]
  22. M. Frigo, and S. G. Johnson, “FFTW: an adaptive software architecture for the FFT,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing. (Institute of Electrical and Electronics Engineers, New York, 1988), pp. 1381–1384.
  23. B. Cense, N. Nassif, T. Chen, M. Pierce, S. H. Yun, B. Park, B. Bouma, G. Tearney, and J. de Boer, “Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography,” Opt. Express 12(11), 2435–2447 (2004). [PubMed]
  24. OpenMP Architecture Review Board, “The OpenMP API specification for parallel programming,” http://www.openmp.org/ .
  25. T. E. Ustun, N. V. Iftimia, R. D. Ferguson, and D. X. Hammer, “Real-time processing for Fourier domain optical coherence tomography using a field programmable gate array,” Rev. Sci. Instrum. 79(11), 114301 (2008). [PubMed]
  26. A. W. Schaefer, J. J. Reynolds, D. L. Marks, and S. A. Boppart, “Real-time digital signal processing-based optical coherence tomography and Doppler optical coherence tomography,” IEEE Trans. Biomed. Eng. 51(1), 186–190 (2004). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited