OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 5 — Dec. 1, 2010
  • pp: 1320–1330

Feasibility of using multiphoton excited tissue autofluorescence for in vivo human histopathology.

Johanna M. Dela Cruz, Jesse D. McMullen, Rebecca M. Williams, and Warren R. Zipfel  »View Author Affiliations


Biomedical Optics Express, Vol. 1, Issue 5, pp. 1320-1330 (2010)
http://dx.doi.org/10.1364/BOE.1.001320


View Full Text Article

Enhanced HTML    Acrobat PDF (874 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Rapid and direct imaging of microscopic tissue morphology and pathology can be achieved by multiphoton imaging of intrinsic tissue fluorophores and second harmonic signals. Engineering parameters for developing this technology for clinical applications include excitation levels and collection efficiencies required to obtain diagnostic quality images from different tissue types and whether these levels are mutagenic. Here we provide data on typical average powers required for high signal-to-noise in vivo tissue imaging and assess the risk potential of these irradiance levels using a mammalian cell gene mutation assay. Exposure times of ~16 milliseconds per cell to 760 nm, ~200 fs raster-scanned laser irradiation delivered through a 0.75 NA objective produced negligible mutagenicity at powers up to about 50 mW.

© 2010 OSA

OCIS Codes
(180.0180) Microscopy : Microscopy
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Microscopy

History
Original Manuscript: September 15, 2010
Revised Manuscript: October 27, 2010
Manuscript Accepted: October 29, 2010
Published: November 5, 2010

Citation
Johanna M. Dela Cruz, Jesse D. McMullen, Rebecca M. Williams, and Warren R. Zipfel , "Feasibility of using multiphoton excited tissue autofluorescence for in vivo human histopathology.," Biomed. Opt. Express 1, 1320-1330 (2010)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-5-1320


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Macaulay, P. Lane, and R. Richards-Kortum, “In vivo pathology: microendoscopy as a new endoscopic imaging modality,” Gastrointest. Endosc. Clin. N. Am. 14(3), 595–620, xi (2004). [CrossRef] [PubMed]
  2. A. L. Polglase, W. J. McLaren, S. A. Skinner, R. Kiesslich, M. F. Neurath, and P. M. Delaney, “A fluorescence confocal endomicroscope for in vivo microscopy of the upper- and the lower-GI tract,” Gastrointest. Endosc. 62(5), 686–695 (2005). [CrossRef] [PubMed]
  3. S. Yoshida, S. Tanaka, M. Hirata, R. Mouri, I. Kaneko, S. Oka, M. Yoshihara, and K. Chayama, “Optical biopsy of GI lesions by reflectance-type laser-scanning confocal microscopy,” Gastrointest. Endosc. 66(1), 144–149 (2007). [CrossRef] [PubMed]
  4. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003). [CrossRef] [PubMed]
  5. P. P. Provenzano, K. W. Eliceiri, and P. J. Keely, “Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment,” Clin. Exp. Metastasis 26(4), 357–370 (2009). [CrossRef] [PubMed]
  6. E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003). [CrossRef] [PubMed]
  7. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005). [CrossRef] [PubMed]
  8. D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, “Delivery of nanojoule femtosecond pulses through large-core microstructured fibers,” Opt. Lett. 27(17), 1513–1515 (2002). [CrossRef] [PubMed]
  9. F. Helmchen, “Miniaturization of fluorescence microscopes using fibre optics,” Exp. Physiol. 87(6), 737–745 (2002). [CrossRef] [PubMed]
  10. L. Fu and M. Gu, “Fibre-optic nonlinear optical microscopy and endoscopy,” J. Microsc. 226(3), 195–206 (2007). [CrossRef] [PubMed]
  11. A. D. Mehta, J. C. Jung, B. A. Flusberg, and M. J. Schnitzer, “Fiber optic in vivo imaging in the mammalian nervous system,” Curr. Opin. Neurobiol. 14(5), 617–628 (2004). [CrossRef] [PubMed]
  12. K. König, A. Ehlers, I. Riemann, S. Schenkl, R. Bückle, and M. Kaatz, “Clinical two-photon microendoscopy,” Microsc. Res. Tech. 70(5), 398–402 (2007). [CrossRef] [PubMed]
  13. H. Bao, A. Boussioutas, R. Jeremy, S. Russell, and M. Gu, “Second harmonic generation imaging via nonlinear endomicroscopy,” Opt. Express 18(2), 1255–1260 (2010). [CrossRef] [PubMed]
  14. J. C. Vryghem, T. Devogelaere, and P. Stodulka, “Efficacy, safety, and flap dimensions of a new femtosecond laser for laser in situ keratomileusis,” J. Cataract Refract. Surg. 36(3), 442–448 (2010). [CrossRef] [PubMed]
  15. A. Skandalis and B. W. Glickman, “Endogenous gene systems for the study of mutational specificity in mammalian cells,” Cancer Cells 2(3), 79–83 (1990). [PubMed]
  16. A. W. Hsie, D. A. Casciano, D. B. Couch, D. F. Krahn, J. P. O’Neill, and B. L. Whitfield, “The use of Chinese hamster ovary cells to quantify specific locus mutation and to determine mutagenicity of chemicals. A report of the gene-tox program,” Mutat. Res. 86(2), 193–214 (1981). [PubMed]
  17. A. P. Li, J. H. Carver, W. N. Choy, A. W. Hsie, R. S. Gupta, K. S. Loveday, J. P. Oneill, J. C. Riddle, L. F. Stankowski, and L. L. Yang, “A guide for the performance of the Chinese-Hamster ovary cell hypoxanthine guanine phosphoribosyl transferase gene mutation assay,” in Mutat. Res. 189, 135–141 (1987).
  18. J. N. Rogart, J. Nagata, C. S. Loeser, R. D. Roorda, H. Aslanian, M. E. Robert, W. R. Zipfel, and M. H. Nathanson, “Multiphoton imaging can be used for microscopic examination of intact human gastrointestinal mucosa ex vivo,” Clin. Gastroenterol. Hepatol. 6(1), 95–101 (2008). [CrossRef] [PubMed]
  19. R. M. Williams, A. Flesken-Nikitin, L. H. Ellenson, D. C. Connolly, T. C. Hamilton, A. Y. Nikitin, and W. R. Zipfel, “Strategies for high-resolution imaging of epithelial ovarian cancer by laparoscopic nonlinear microscopy,” Transl Oncol 3(3), 181–194 (2010). [PubMed]
  20. S. Mukherjee, J. S. Wysock, C. K. Ng, M. Akhtar, S. Perner, M. M. Lee, M. A. Rubin, F. R. Maxfield, W. W. Webb, and D. S. Scherr, “Human bladder cancer diagnosis using Multiphoton microscopy,” Proc. SPIE 7161, nihpa96839 (2009).
  21. Y. Sako, A. Sekihata, Y. Yanagisawa, M. Yamamoto, Y. Shimada, K. Ozaki, and A. Kusumi, “Comparison of two-photon excitation laser scanning microscopy with UV-confocal laser scanning microscopy in three-dimensional calcium imaging using the fluorescence indicator Indo-1,” J. Microsc. 185(1), 9–20 (1997). [CrossRef] [PubMed]
  22. M. Lipkin, B. Bell, and P. Sherlock, “Cell Proliferation Kinetics in the Gastrointestinal Tract Of Man: Cell Renewal In Colon and Rectum,” J. Clin. Invest. 42(6), 767–776 (1963). [CrossRef] [PubMed]
  23. J. Dahle and E. Kvam, “Induction of delayed mutations and chromosomal instability in fibroblasts after UVA-, UVB-, and X-radiation,” in Cancer Res. 63, 1464–1469 (2003).
  24. J. Leavitt, M. Fatone, C. Hestdalen, J. W. Obringer, and H. S. Tillinghast, “Mutagenic activity of high-energy 532 nm ultra-short laser pulses,” in Radiation Res. 147, 490–494 (1997).
  25. R. A. Meldrum, S. W. Botchway, C. W. Wharton, and G. J. Hirst, “Nanoscale spatial induction of ultraviolet photoproducts in cellular DNA by three-photon near-infrared absorption,” EMBO Rep. 4(12), 1144–1149 (2003). [CrossRef] [PubMed]
  26. R. Brem, F. Li, and P. Karran, “Reactive oxygen species generated by thiopurine/UVA cause irreparable transcription-blocking DNA lesions,” in Nucleic Acids Res. 37, 1951–1961 (2009).
  27. P. Morliere, A. Moysan, R. Santus, G. Huppe, J. C. Maziere, and L. Dubertret, “UVA-induced lipid-peroxidation in cultured human fibroblasts,” in Biochim. Biophys. Acta 1084, 261–268 (1991).
  28. R. M. Tyrrell and M. Pidoux, “Singlet oxygen involvement in the inactivation of cultured human-fibroblasts by UVA (334 nm, 365 nm) and near-visible (405 nm) radiations,” in Photochem. Photobiol. 49,407–412 (1989).
  29. T. Douki, D. Perdiz, P. Gróf, Z. Kuluncsics, E. Moustacchi, J. Cadet, and E. Sage, “Oxidation of guanine in cellular DNA by solar UV radiation: biological role,” Photochem. Photobiol. 70(2), 184–190 (1999). [CrossRef] [PubMed]
  30. G. P. Pfeifer, Y. H. You, and A. Besaratinia, “Mutations induced by ultraviolet light,” Mutat. Res. 571(1-2), 19–31 (2005). [CrossRef] [PubMed]
  31. U. P. Kappes, D. Luo, M. Potter, K. Schulmeister, and T. M. Rünger, “Short- and long-wave UV light (UVB and UVA) induce similar mutations in human skin cells,” J. Invest. Dermatol. 126(3), 667–675 (2006). [CrossRef] [PubMed]
  32. C. Lohr, N. Raquet, and D. Schrenk, “Application of the concept of relative photomutagenic potencies to selected furocoumarins in V79 cells,” Toxicol. In Vitro 24(2), 558–566 (2010). [CrossRef] [PubMed]
  33. D. Papadopoulo, A. Laquerbe, C. Guillouf, and E. Moustacchi, “Molecular spectrum of mutations induced at the HPRT locus by a cross-linking agent in human cell lines with different repair capacities,” Mutat. Res. 294(2), 167–177 (1993). [PubMed]
  34. J. H. Li and T. G. Rossman, “Comutagenesis of sodium arsenite with ultraviolet radiation in Chinese hamster V79 cells,” Biol. Met. 4(4), 197–200 (1991). [CrossRef] [PubMed]
  35. L. Fu, A. Jain, H. Xie, C. Cranfield, and M. Gu, “Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror,” Opt. Express 14(3), 1027–1032 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited