OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 5 — Dec. 1, 2010
  • pp: 1331–1340

Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient

David Borja, Damian Siedlecki, Alberto de Castro, Stephen Uhlhorn, Sergio Ortiz, Esdras Arrieta, Jean-Marie Parel, Susana Marcos, and Fabrice Manns  »View Author Affiliations


Biomedical Optics Express, Vol. 1, Issue 5, pp. 1331-1340 (2010)
http://dx.doi.org/10.1364/BOE.1.001331


View Full Text Article

Enhanced HTML    Acrobat PDF (1161 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We quantify the posterior surface distortions in optical coherence tomography (OCT) images of isolated crystalline lenses. The posterior radius of curvature and asphericity obtained from OCT images acquired with the beam incident first on the anterior, and then the posterior, surface were compared. The results were compared with predictions of a ray-tracing model which includes the index gradient. The results show that the error in the radius of curvature is within the measurement reproducibility and that it can be corrected by assuming a uniform refractive index. However, accurate asphericity values require a correction algorithm that takes into account the gradient.

© 2010 OSA

OCIS Codes
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.7326) Vision, color, and visual optics : Visual optics, modeling

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: September 16, 2010
Revised Manuscript: October 19, 2010
Manuscript Accepted: October 30, 2010
Published: November 8, 2010

Citation
David Borja, Damian Siedlecki, Alberto de Castro, Stephen Uhlhorn, Sergio Ortiz, Esdras Arrieta, Jean-Marie Parel, Susana Marcos, and Fabrice Manns, "Distortions of the posterior surface in optical coherence tomography images of the isolated crystalline lens: effect of the lens index gradient," Biomed. Opt. Express 1, 1331-1340 (2010)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-5-1331


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. K. Pierscionek and D. Y. Chan, “Refractive index gradient of human lenses,” Optom. Vis. Sci. 66(12), 822–829 (1989). [CrossRef] [PubMed]
  2. R. C. Augusteyn, C. E. Jones, and J. M. Pope, “Age-related development of a refractive index plateau in the human lens: evidence for a distinct nucleus,” Clin. Exp. Optom. 91(3), 296–301 (2008). [CrossRef] [PubMed]
  3. C. E. Jones, D. A. Atchison, R. Meder, and J. M. Pope, “Refractive index distribution and optical properties of the isolated human lens measured using magnetic resonance imaging (MRI),” Vision Res. 45(18), 2352–2366 (2005). [CrossRef] [PubMed]
  4. P. J. Sands, “Third-order aberrations of inhomogeneous lenses,” J. Opt. Soc. Am. 60(11), 1436–1443 (1970). [CrossRef]
  5. G. Smith, P. Bedggood, R. Ashman, M. Daaboul, and A. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci. 85(5), 330–340 (2008). [CrossRef] [PubMed]
  6. M. Dubbelman and G. L. Van der Heijde, “The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox,” Vision Res. 41(14), 1867–1877 (2001). [CrossRef] [PubMed]
  7. P. Rosales, M. Dubbelman, S. Marcos, and R. van der Heijde, “Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging,” J. Vis. 6(10), 5 (2006). [CrossRef] [PubMed]
  8. P. Rosales and S. Marcos, “Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens,” J. Refract. Surg. 25(5), 421–428 (2009). [CrossRef] [PubMed]
  9. Y. Verma, K. D. Rao, M. K. Suresh, H. S. Patel, and P. K. Gupta, “Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography,” Appl. Phys. B 87(4), 607–610 (2007). [CrossRef]
  10. S. R. Uhlhorn, D. Borja, F. Manns, and J.-M. Parel, “Refractive index measurement of the isolated crystalline lens using optical coherence tomography,” Vision Res. 48(27), 2732–2738 (2008). [CrossRef] [PubMed]
  11. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009). [CrossRef] [PubMed]
  12. M. C. M. Dunne, L. N. Davies, and J. S. Wolffsohn, “Accuracy of cornea and lens biometry using anterior segment optical coherence tomography,” J. Biomed. Opt. 12(6), 064023 (2007). [CrossRef] [PubMed]
  13. V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express 10(9), 397–404 (2002). [PubMed]
  14. A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol. 49(7), 1277–1294 (2004). [CrossRef] [PubMed]
  15. M. Zhao, A. N. Kuo, and J. A. Izatt, “3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea,” Opt. Express 18(9), 8923–8936 (2010). [CrossRef] [PubMed]
  16. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express 18(3), 2782–2796 (2010). [CrossRef] [PubMed]
  17. R. C. Augusteyn, A. M. Rosen, D. Borja, N. M. Ziebarth, and J.-M. Parel, “Biometry of primate lenses during immersion in preservation media,” Mol. Vis. 12, 740–747 (2006). [PubMed]
  18. R. Urs, A. Ho, F. Manns, and J. M. Parel, “Age-dependent Fourier model of the shape of the isolated ex vivo human crystalline lens,” Vision Res. 50(11), 1041–1047 (2010). [CrossRef] [PubMed]
  19. F. Manns, V. Fernandez, S. Zipper, S. Sandadi, M. Hamaoui, A. Ho, and J. M. Parel, “Radius of curvature and asphericity of the anterior and posterior surface of human cadaver crystalline lenses,” Exp. Eye Res. 78(1), 39–51 (2004). [CrossRef] [PubMed]
  20. A. M. Rosen, D. B. Denham, V. Fernandez, D. Borja, A. Ho, F. Manns, J. M. Parel, and R. C. Augusteyn, “In vitro dimensions and curvatures of human lenses,” Vision Res. 46(6-7), 1002–1009 (2006). [CrossRef] [PubMed]
  21. D. Borja, F. Manns, A. Ho, N. Ziebarth, A. M. Rosen, R. Jain, A. Amelinckx, E. Arrieta, R. C. Augusteyn, and J.-M. Parel, “Optical power of the isolated human crystalline lens,” Invest. Ophthalmol. Vis. Sci. 49(6), 2541–2548 (2008). [CrossRef] [PubMed]
  22. A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A 24(8), 2157–2174 (2007). [CrossRef] [PubMed]
  23. A. de Castro, S. Ortiz, E. Gambra, D. Siedlecki, and S. Marcos, “Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging,” Opt. Express 18(21), 21905–21917 (2010). [CrossRef] [PubMed]
  24. A. Pérez-Escudero, C. Dorronsoro, and S. Marcos, “Correlation between radius and asphericity in surfaces fitted by conics,” J. Opt. Soc. Am. A 27(7), 1541–1548 (2010). [CrossRef] [PubMed]
  25. A. Sharma, D. V. Kumar, and A. K. Ghatak, “Tracing rays through graded-index media: a new method,” Appl. Opt. 21(6), 984–987 (1982). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited