OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 5 — Dec. 1, 2010
  • pp: 1347–1357

Multimodal CARS microscopy of structured carbohydrate biopolymers

Aaron D. Slepkov, Andrew Ridsdale, Adrian F. Pegoraro, Douglas J. Moffatt, and Albert Stolow  »View Author Affiliations


Biomedical Optics Express, Vol. 1, Issue 5, pp. 1347-1357 (2010)
http://dx.doi.org/10.1364/BOE.1.001347


View Full Text Article

Enhanced HTML    Acrobat PDF (1390 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the utility of multimodal coherent anti-Stokes Raman scattering (CARS) microscopy for the study of structured condensed carbohydrate systems. Simultaneous second-harmonic generation (SHG) and spectrally-scanned CARS microscopy was used to elucidate structure, alignment, and density in cellulose cotton fibers and in starch grains undergoing rapid heat-moisture swelling. Our results suggest that CARS response of the O-H stretch region (3000 cm−1–3400 cm−1), together with the commonly-measured C-H stretch (2750 cm−1–2970 cm−1) and SHG provide potentially important structural information and contrast in these materials.

© 2010 OSA

OCIS Codes
(300.6230) Spectroscopy : Spectroscopy, coherent anti-Stokes Raman scattering
(160.1435) Materials : Biomaterials
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Microscopy

History
Original Manuscript: October 1, 2010
Revised Manuscript: October 4, 2010
Manuscript Accepted: November 4, 2010
Published: November 8, 2010

Citation
Aaron D. Slepkov, Andrew Ridsdale, Adrian F. Pegoraro, Douglas J. Moffatt, and Albert Stolow, "Multimodal CARS microscopy of structured carbohydrate biopolymers," Biomed. Opt. Express 1, 1347-1357 (2010)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-5-1347


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999). [CrossRef]
  2. J.-X. Cheng and X. Xie, “Coherent anti-Stokes Raman scattering microscopy: Instrumentation, theory, and applications,” J. Phys. Chem. B 108(3), 827–840 (2004). [CrossRef]
  3. C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008). [CrossRef] [PubMed]
  4. B. von Vacano, T. Buckup, and M. Motzkus, “Highly sensitive single-beam heterodyne coherent anti-Stokes Raman scattering,” Opt. Lett. 31(16), 2495–2497 (2006). [CrossRef] [PubMed]
  5. A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, J. P. Pezacki, and A. Stolow, “Single laser source for multimodal coherent anti-Stokes Raman scattering microscopy,” Appl. Opt. 49(25), F10–F17 (2010). [CrossRef] [PubMed]
  6. A. Volkmer, “Coherent Raman Scattering Microscopy”, in Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields, P. Matousek and M. D. Morris, Eds. (Springer, New York, 2010).
  7. M. Müller and J. M. Schins, “Imaging the thermodynamic state of lipid membranes with multiplex CARS microscopy,” J. Phys. Chem. B 106(14), 3715–3723 (2002). [CrossRef]
  8. J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Multiplex coherent anti-stokes Raman scattering microspectroscopy and study of lipid vesicles,” J. Phys. Chem. B 106(34), 8493–8498 (2002). [CrossRef]
  9. E. O. Potma and X. S. Xie, “Detection of single lipid bilayers with coherent anti-Stokes Raman scattering (CARS) microscopy,” J. Raman Spectrosc. 34(9), 642–650 (2003). [CrossRef]
  10. H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581–591 (2005). [CrossRef] [PubMed]
  11. T. Hellerer, C. Axäng, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, “Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy,” Proc. Natl. Acad. Sci. U.S.A. 104(37), 14658–14663 (2007). [CrossRef] [PubMed]
  12. R. K. Lyn, D. C. Kennedy, S. M. Sagan, D. R. Blais, Y. Rouleau, A. F. Pegoraro, X. S. Xie, A. Stolow, and J. P. Pezacki, “Direct imaging of the disruption of hepatitis C virus replication complexes by inhibitors of lipid metabolism,” Virology 394(1), 130–142 (2009). [CrossRef] [PubMed]
  13. J.-X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001). [CrossRef] [PubMed]
  14. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008). [CrossRef] [PubMed]
  15. H. Wang, Y. Fu, P. Zickmund, R. Shi, and J.-X. Cheng, “Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581–591 (2005). [CrossRef] [PubMed]
  16. R. S. Lim, A. Kratzer, N. P. Barry, S. Miyazaki-Anzai, M. Miyazaki, W. W. Mantulin, M. Levi, E. O. Potma, and B. J. Tromberg, “Multimodal CARS microscopy determination of the impact of diet on macrophage infiltration and lipid accumulation on plaque formation in ApoE-deficient mice,” J. Lipid Res. 51(7), 1729–1737 (2010). [CrossRef] [PubMed]
  17. L. B. Mostaço-Guidolin, M. G. Sowa, A. Ridsdale, A. F. Pegoraro, M. S. D. Smith, M. D. Hewko, E. K. Kohlenberg, B. Schattka, M. Shiomi, A. Stolow, and A. C.-T. Ko, “Differentiating atherosclerotic plaque burden in arterial tissues using femtosecond CARS-based multimodal nonlinear optical imaging,” Biomed. Opt. Express 1(1), 59–73 (2010). [CrossRef]
  18. T. Hellerer, A. M. K. Enejder, and A. Zumbusch, “Spectral focusing: high spectral resolution spectroscopy with broad-bandwidth laser pulses,” Appl. Phys. Lett. 85, 25 (2004). [CrossRef]
  19. A. F. Pegoraro, A. Ridsdale, D. J. Moffatt, Y. Jia, J. P. Pezacki, and A. Stolow, “Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator,” Opt. Express 17(4), 2984–2996 (2009). [CrossRef] [PubMed]
  20. Y. Fu, T. B. Huff, H.-W. Wang, J.-X. Cheng, and H. Wang, “Ex vivo and in vivo imaging of myelin fibers in mouse brain by coherent anti-Stokes Raman scattering microscopy,” Opt. Express 16(24), 19396–19409 (2008). [CrossRef] [PubMed]
  21. H.-W. Wang, T. T. Le, and J.-X. Cheng, “Label-free imaging of arterial cells and extracellular matrix using a multimodal CARS microscope,” Opt. Commun. 281(7), 1813–1822 (2008). [CrossRef] [PubMed]
  22. X. Nan, E. O. Potma, and X. S. Xie, “Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-stokes Raman scattering microscopy,” Biophys. J. 91(2), 728–735 (2006). [CrossRef] [PubMed]
  23. C. P. Pfeffer, B. R. Olsen, F. Ganikhanov, and F. Légaré, “Multimodal nonlinear optical imaging of collagen arrays,” J. Struct. Biol. 164(1), 140–145 (2008). [CrossRef] [PubMed]
  24. F. John, Robyt, Essentials of Carbohydrate Chemistry (Springer-Verlag, 1998), Chap. 6.
  25. A. Buléon, G. Véronèse, and J.-L. Putaux, “Self-association and crystallization of amylose,” Aust. J. Chem. 60(10), 706–718 (2007). [CrossRef]
  26. A. Buléon, and P. Colonna, “Physicochemical Behaviour of Starch in Food Applications”, in The Chemical Physics of Food, P. Belton, ed. (Blackwell Publishing Ltd, Oxford, 2007).
  27. C. G. Biliaderis, “The structure and interactions of starch with food constituents,” Can. J. Physiol. Pharmacol. 69(1), 60–78 (1991). [PubMed]
  28. T. Loftsson and D. Duchêne, “Cyclodextrins and their pharmaceutical applications,” Int. J. Pharm. 329(1–2), 1–11 (2007). [CrossRef] [PubMed]
  29. A. Gunaratne and R. Hoover, “Effect of heat-moisture treatment on the structure and physicochemical properties of tuber and root starches,” Carbohydr. Polym. 49(4), 425–437 (2002). [CrossRef]
  30. H. F. Zobel, “Molecules to Granules: A Comprehensive Starch Review,” Starch 40 44–50 (1988).
  31. P. M. Fechner, S. Wartewig, P. Kleinebudde, and R. H. Neubert, “Studies of the retrogradation process for various starch gels using Raman spectroscopy,” Carbohydr. Res. 340(16), 2563–2568 (2005). [CrossRef] [PubMed]
  32. G. Cox, N. Moreno, and J. Feijó, “Second-harmonic imaging of plant polysaccharides,” J. Biomed. Opt. 10(2), 024013 (2005). [CrossRef] [PubMed]
  33. K. N. Anisha Thayil, E. J. Gualda, S. Psilodimitrakopoulos, I. G. Cormack, I. Amat-Roldán, M. Mathew, D. Artigas, and P. Loza-Alvarez, “Starch-based backwards SHG for in situ MEFISTO pulse characterization in multiphoton microscopy,” J. Microsc. 230(1), 70–75 (2008). [CrossRef] [PubMed]
  34. R. Cisek, L. Spencer, N. Prent, D. Zigmantas, G. S. Espie, and V. Barzda, “Optical microscopy in photosynthesis,” Photosynth. Res. 102(2–3), 111–141 (2009). [CrossRef] [PubMed]
  35. R. Carriles, D. N. Schafer, K. E. Sheetz, J. J. Field, R. Cisek, V. Barzda, A. W. Sylvester, and J. A. Squier, “Invited review article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy,” Rev. Sci. Instrum. 80(8), 081101 (2009). [CrossRef] [PubMed]
  36. S. Psilodimitrakopoulos, I. Amat-Roldan, P. Loza-Alvarez, and D. Artigas, “Estimating the helical pitch angle of amylopectin in starch using polarization second harmonic generation microscopy,” J. Opt. 12(8), 084007 (2010). [CrossRef]
  37. Z.-Y. Zhuo, C.-S. Liao, C.-H. Huang, J.-Y. Yu, Y.-Y. Tzeng, W. Lo, C.-Y. Dong, H.-C. Chui, Y.-C. Huang, H.-M. Lai, and S.-W. Chu, “Second harmonic generation imaging - a new method for unraveling molecular information of starch,” J. Struct. Biol. 171(1), 88–94 (2010). [CrossRef] [PubMed]
  38. R. Cisek, A. Tuer, S. Krouglov, I. J. Tetlow, F. Liu and V.Barzda, University of Toronto Mississauga, are preparing a manuscript titled “Harmonic generation microscopy of starch granules.”
  39. http://www.britannica.com/EBchecked/topic/101633/cellulose ; accessed September 9, 2010.
  40. P. Zugenmaier, Crystalline Cellulose and Cellulose Derivatives (Springer, Berlin, 2008).
  41. R. H. Atalla and D. L. Vanderhart, “Studies on the structure of cellulose using Raman spectroscopy and solid state C NMR,” ICP Technical Paper Series no. 306 (1988), pp. 1–20.
  42. J. H. Wiley and R. H. Atalla, “Band assignments in the Raman-spectra of celluloses,” Carbohydr. Res. 160, 113–129 (1987). [CrossRef]
  43. M. E. Himmel, S. Y. Ding, D. K. Johnson, W. S. Adney, M. R. Nimlos, J. W. Brady, and T. D. Foust, “Biomass recalcitrance: engineering plants and enzymes for biofuels production,” Science 315(5813), 804–807 (2007). [CrossRef] [PubMed]
  44. T. T. Teeri, “Crystalline cellulose degredation: new insight into the function of cellobiohydrolases,” Trends Biotechnol. 15(5), 160–167 (1997). [CrossRef]
  45. D. Klemm, B. Heublein, H. P. Fink, and A. Bohn, “Cellulose: fascinating biopolymer and sustainable raw material,” Angew. Chem. Int. Ed. Engl. 44(22), 3358–3393 (2005). [CrossRef] [PubMed]
  46. Y. Marubashi, T. Higashi, S. Hirakawa, S. Tani, T. Erata, M. Takai, and J. Kawamata, “Second Harmonic Generaion Measurements for Biomacromolecules: Celluloses,” Opt. Rev. 11(6), 385–387 (2004). [CrossRef]
  47. R. M. J. Brown, A. C. Millard, and P. J. Campagnola, “Macromolecular structure of cellulose studied by second-harmonic generation imaging microscopy,” Opt. Lett. 28(22), 2207–2209 (2003). [CrossRef] [PubMed]
  48. O. Nadiarnykh, R. B. Lacomb, P. J. Campagnola, and W. A. Mohler, “Coherent and incoherent SHG in fibrillar cellulose matrices,” Opt. Express 15(6), 3348–3360 (2007). [CrossRef] [PubMed]
  49. M. Åkerholm, B. Hinterstoisser, and L. Salmén, “Characterization of the crystalline structure of cellulose using static and dynamic FT-IR spectroscopy,” Carbohydr. Res. 339(3), 569–578 (2004). [CrossRef] [PubMed]
  50. B. Bakri and S. J. Eichhorn, “Elastic coils: deformation micromechanics of coir and celery fibres,” Cellulose 17(1), 1–11 (2010). [CrossRef]
  51. M. Zimmerley, R. Younger, T. Valenton, D. C. Oertel, J. L. Ward, and E. O. Potma, “Molecular orientation in dry and hydrated cellulose fibers: a coherent anti-Stokes Raman scattering microscopy study,” J. Phys. Chem. B 114(31), 10200–10208 (2010). [CrossRef] [PubMed]
  52. A. D. Slepkov, A. Ridsdale, H.-N. Wan, M.-H. Wang, A. F. Pegoraro, D. J. Moffatt, J. P. Pezacki, F.-J. Kao, and A. Stolow, “Forward-Collected FLIM-CARS Microscopy,” J. Biomed. Opt. In press.
  53. D. J. Gallant, B. Bouchet, and P. M. Baldwin, “Microscopy of starch: evidence of a new level of granule organization,” Carbohydr. Polym. 32(3–4), 177–191 (1997). [CrossRef]
  54. http://www.chemistryexplained.com/Pl-Pr/Polymers-Natural.html , accessed September 2010.
  55. N. Gierlinger, S. Luss, C. König, J. Konnerth, M. Eder, and P. Fratzl, “Cellulose microfibril orientation of Picea abies and its variability at the micron-level determined by Raman imaging,” J. Exp. Bot. 61(2), 587–595 (2010). [CrossRef] [PubMed]
  56. B. Hinterstoisser, M. Akerholm, and L. Salmén, “Effect of fiber orientation in dynamic FTIR study on native cellulose,” Carbohydr. Res. 334(1), 27–37 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Supplementary Material


» Media 1: AVI (3152 KB)     
» Media 2: AVI (3640 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited