OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 5 — Dec. 1, 2010
  • pp: 1358–1383

Retinal Nerve Fiber Layer Segmentation on FD-OCT Scans of Normal Subjects and Glaucoma Patients

Markus A. Mayer, Joachim Hornegger, Christian Y. Mardin, and Ralf P. Tornow  »View Author Affiliations

Biomedical Optics Express, Vol. 1, Issue 5, pp. 1358-1383 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1999 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Automated measurements of the retinal nerve fiber layer thickness on circular OCT B-Scans provide physicians additional parameters for glaucoma diagnosis. We propose a novel retinal nerve fiber layer segmentation algorithm for frequency domain data that can be applied on scans from both normal healthy subjects, as well as glaucoma patients, using the same set of parameters. In addition, the algorithm remains almost unaffected by image quality. The main part of the segmentation process is based on the minimization of an energy function consisting of gradient and local smoothing terms. A quantitative evaluation comparing the automated segmentation results to manually corrected segmentations from three reviewers is performed. A total of 72 scans from glaucoma patients and 132 scans from normal subjects, all from different persons, composed the database for the evaluation of the segmentation algorithm. A mean absolute error per A-Scan of 2.9 µm was achieved on glaucomatous eyes, and 3.6 µm on healthy eyes. The mean absolute segmentation error over all A-Scans lies below 10 µm on 95.1% of the images. Thus our approach provides a reliable tool for extracting diagnostic relevant parameters from OCT B-Scans for glaucoma diagnosis.

© 2010 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography

ToC Category:
Ophthalmology Applications

Original Manuscript: October 12, 2010
Revised Manuscript: October 29, 2010
Manuscript Accepted: November 3, 2010
Published: November 8, 2010

Markus A. Mayer, Joachim Hornegger, Christian Y. Mardin, and Ralf P. Tornow, "Retinal Nerve Fiber Layer Segmentation on FD-OCT Scans of Normal Subjects and Glaucoma Patients," Biomed. Opt. Express 1, 1358-1383 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. B. E. Klein, R. Klein, W. E. Sponsel, T. Franke, L. B. Cantor, J. Martone, and M. J. Menage, “Prevalence of glaucoma. The Beaver Dam Eye Study,” Ophthalmology 99(10), 1499–1504 (1992). [PubMed]
  3. H. A. Quigley and A. T. Broman, “The number of people with glaucoma worldwide in 2010 and 2020,” Br. J. Ophthalmol. 90(3), 262–267 (2006). [CrossRef] [PubMed]
  4. V. Guedes, J. S. Schuman, E. Hertzmark, G. Wollstein, A. Correnti, R. Mancini, D. Lederer, S. Voskanian, L. Velazquez, H. M. Pakter, T. Pedut-Kloizman, J. G. Fujimoto, and C. Mattox, “Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes,” Ophthalmology 110(1), 177–189 (2003). [CrossRef] [PubMed]
  5. G. Wollstein, J. S. Schuman, L. L. Price, A. Aydin, P. C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J. G. Fujimoto, and L. A. Paunescu, “Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma,” Arch. Ophthalmol. 123(4), 464–470 (2005). [CrossRef] [PubMed]
  6. V. Polo, J. M. Larrosa, A. Ferreras, F. Mayoral, V. Pueyo, and F. M. Honrubia, “Retinal nerve fiber layer evaluation in open-angle glaucoma. Optimum criteria for optical coherence tomography,” Ophthalmologica 223(1), 2–6 (2009). [CrossRef] [PubMed]
  7. F. K. Horn, C. Y. Mardin, R. Laemmer, D. Baleanu, A. Juenemann, F. E. Kruse, and R. P. Tornow, “Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with polarimetry and spectral domain OCT,” Invest. Ophthalmol. Vis. Sci. 50(5), 1971–1977 (2009) (IOVS). [CrossRef] [PubMed]
  8. D. Koozekanani, K. Boyer, and C. Roberts, “Retinal thickness measurements from optical coherence tomography using a Markov boundary model,” IEEE Trans. Med. Imaging 20(9), 900–916 (2001). [CrossRef] [PubMed]
  9. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in Optical Coherence Tomography,” J. Biomed. Opt. 4(1), 95–105 (1999). [CrossRef]
  10. H. Ishikawa, S. Piette, J. M. Liebmann, and R. Ritch, “Detecting the inner and outer borders of the retinal nerve fiber layer using optical coherence tomography,” Graefes Arch. Clin. Exp. Ophthalmol. 240(5), 362–371 (2002). [CrossRef] [PubMed]
  11. H. Ishikawa, D. M. Stein, G. Wollstein, S. Beaton, J. G. Fujimoto, and J. S. Schuman, “Macular segmentation with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 46(6), 2012–2017 (2005) (IOVS). [CrossRef] [PubMed]
  12. D. M. Stein, H. Ishikawa, R. Hariprasad, G. Wollstein, R. J. Noecker, J. G. Fujimoto, and J. S. Schuman, “A new quality assessment parameter for optical coherence tomography,” Br. J. Ophthalmol. 90(2), 186–190 (2006). [CrossRef] [PubMed]
  13. M. Shahidi, Z. Wang, and R. Zelkha, “Quantitative thickness measurement of retinal layers imaged by optical coherence tomography,” Am. J. Ophthalmol. 139(6), 1056–1061 (2005). [CrossRef] [PubMed]
  14. D. Cabrera Fernández, H. M. Salinas, and C. A. Puliafito, “Automated detection of retinal layer structures on optical coherence tomography images,” Opt. Express 13(25), 10200–10216 (2005). [CrossRef] [PubMed]
  15. G. Gilboa, N. A. Sochen, and Y. Y. Zeevi, “Image enhancement and denoising by complex diffusion processes,” IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1020–1036 (2004). [CrossRef] [PubMed]
  16. M. Mujat, R. Chan, B. Cense, B. Park, C. Joo, T. Akkin, T. Chen, and J. de Boer, “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Express 13(23), 9480–9491 (2005). [CrossRef] [PubMed]
  17. G. M. Somfai, H. M. Salinas, C. A. Puliafito, and D. C. Fernández, “Evaluation of potential image acquisition pitfalls during optical coherence tomography and their influence on retinal image segmentation,” J. Biomed. Opt. 12(4), 041209 (2007). [CrossRef] [PubMed]
  18. M. Baroni, P. Fortunato, and A. La Torre, “Towards quantitative analysis of retinal features in optical coherence tomography,” Med. Eng. Phys. 29(4), 432–441 (2007). [CrossRef] [PubMed]
  19. O. Tan, G. Li, A. T.-H. Lu, R. Varma, D. Huang, and A. I. for Glaucoma Study Group, “Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis,” Ophthalmology 115(6), 949–956 (2008). [CrossRef] [PubMed]
  20. O. Tan, V. Chopra, A. T.-H. Lu, J. S. Schuman, H. Ishikawa, G. Wollstein, R. Varma, and D. Huang, “Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography,” Ophthalmology 116(12), 2305–2314.e2 (2009). [CrossRef] [PubMed]
  21. M. Haeker, M. Abramoff, R. Kardon, and M. Sonka, “Segmentation of the Surfaces of the Retinal Layer from OCT Images,” in Medical Image Computing and Computer-Assisted Intervention - MICCAI 2006, 800–807 (2006).
  22. M. K. Garvin, M. D. Abramoff, R. Kardon, S. R. Russell, X. Wu, and M. Sonka, “Intraretinal layer segmentation of macular optical coherence tomography images using optimal 3-D graph search,” IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008). [CrossRef] [PubMed]
  23. G. Quellec, K. Lee, M. Dolejsi, M. K. Garvin, M. D. Abràmoff, and M. Sonka, “Three-dimensional analysis of retinal layer texture: identification of fluid-filled regions in SD-OCT of the macula,” IEEE Trans. Med. Imaging 29(6), 1321–1330 (2010). [CrossRef] [PubMed]
  24. D. Tolliver, I. Koutis, H. Ishikawa, J. S. Schuman, and G. L. Miller, “Unassisted Segmentation of Multiple Retinal Layers via Spectral Rounding,” in ARVO 2008 Annual Meeting (Association for Research in Vision and Ophthalmology, Fort Lauderdale, 2008), Poster.
  25. A. Mishra, A. Wong, K. Bizheva, and D. A. Clausi, “Intra-retinal layer segmentation in optical coherence tomography images,” Opt. Express 17(26), 23719–23728 (2009). [CrossRef] [PubMed]
  26. A. Yazdanpanah, G. Hamarneh, B. Smith, and M. Sarunic, “Intra-retinal Layer Segmentation in Optical Coherence Tomography Using an Active Contour Approach,” in MICCAI ’09: Proceedings of the 12th International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 649–656 (Springer-Verlag, Berlin, Heidelberg, 2009).
  27. V. Kajić, B. Povazay, B. Hermann, B. Hofer, D. Marshall, P. L. Rosin, and W. Drexler, “Robust segmentation of intraretinal layers in the normal human fovea using a novel statistical model based on texture and shape analysis,” Opt. Express 18(14), 14730–14744 (2010). [CrossRef] [PubMed]
  28. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, ““Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18(18), 19413–19428 (2010).
  29. K. Vermeer, J. van der Schoot, J. de Boer, and H. Lemij, “Automated Retinal and NFL Segmentation in OCT Volume Scans by Pixel Classification,” in ARVO 2010 Annual Meeting (Association for Research in Vision and Ophthalmology, Fort Lauderdale, 2010), Poster.
  30. E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography,” Opt. Express 16(21), 16410–16422 (2008). [CrossRef] [PubMed]
  31. A. R. Fuller, R. J. Zawadzki, S. Choi, D. F. Wiley, J. S. Werner, and B. Hamann, “Segmentation of three-dimensional retinal image data,” IEEE Trans. Vis. Comput. Graph. 13(6), 1719–1726 (2007). [CrossRef] [PubMed]
  32. M. Szkulmowski, M. Wojtkowski, B. Sikorski, T. Bajraszewski, V. J. Srinivasan, A. Szkulmowska, J. J. Kałuzny, J. G. Fujimoto, and A. Kowalczyk, “Analysis of posterior retinal layers in spectral optical coherence tomography images of the normal retina and retinal pathologies,” J. Biomed. Opt. 12(4), 041207 (2007). [CrossRef] [PubMed]
  33. S. Joeres, J. W. Tsong, P. G. Updike, A. T. Collins, L. Dustin, A. C. Walsh, P. W. Romano, and S. R. Sadda, “Reproducibility of quantitative optical coherence tomography subanalysis in neovascular age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 48(9), 4300–4307 (2007) (IOVS). [CrossRef] [PubMed]
  34. S. R. Sadda, S. Joeres, Z. Wu, P. Updike, P. Romano, A. T. Collins, and A. C. Walsh, “Error correction and quantitative subanalysis of optical coherence tomography data using computer-assisted grading,” Invest. Ophthalmol. Vis. Sci. 48(2), 839–848 (2007) (IOVS). [CrossRef] [PubMed]
  35. D. Baleanu, R. P. Tornow, F. K. Horn, R. Laemmer, C. W. Roessler, A. G. Juenemann, F. E. Kruse, and C. Y. Mardin, “Retinal Nerve Fiber Layer Thickness in Normals Measured by Spectral Domain OCT,” J. Glaucoma 19(7), 475–482 (2009).
  36. C. R. Vogel and M. E. Oman, “Iterative Methods for Total Variation Denoising,” SIAM J. Sci. Comput. 17(1), 227–238 (1996). [CrossRef]
  37. T. Chan and P. Mulet, “On the convergence of the lagged diffusivity fixed point method in total variation image restoration,” SIAM J. Numer. Anal. 36(2), 354–367 (1999). [CrossRef]
  38. A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003). [CrossRef]
  39. D. C. Hood, B. Fortune, S. N. Arthur, D. Xing, J. A. Salant, R. Ritch, and J. M. Liebmann, “Blood vessel contributions to retinal nerve fiber layer thickness profiles measured with optical coherence tomography,” J. Glaucoma 17(7), 519–528 (2008). [CrossRef] [PubMed]
  40. D. C. Hood, A. S. Raza, K. Y. Kay, S. F. Sandler, D. Xin, R. Ritch, and J. M. Liebmann, “A comparison of retinal nerve fiber layer (RNFL) thickness obtained with frequency and time domain optical coherence tomography (OCT),” Opt. Express 17(5), 3997–4003 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited