OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 5 — Dec. 1, 2010
  • pp: 1408–1431

High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array

Ryan A. Colyer, Giuseppe Scalia, Ivan Rech, Angelo Gulinatti, Massimo Ghioni, Sergio Cova, Shimon Weiss, and Xavier Michalet  »View Author Affiliations

Biomedical Optics Express, Vol. 1, Issue 5, pp. 1408-1431 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1931 KB) | SpotlightSpotlight on Optics

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel approach to high-throughput Fluorescence Correlation Spectroscopy (FCS) which enables us to obtain one order of magnitude improvement in acquisition time. Our approach utilizes a liquid crystal on silicon spatial light modulator to generate dynamically adjustable focal spots, and uses an eight-pixel monolithic single-photon avalanche photodiode array. We demonstrate the capabilities of this system by showing FCS of Rhodamine 6G under various viscosities, and by showing that, with proper calibration of each detection channel, one order of magnitude improvement in acquisition speed is obtained. More generally, our approach will allow higher throughput single-molecule studies to be performed.

© 2010 OSA

OCIS Codes
(040.1240) Detectors : Arrays
(040.6070) Detectors : Solid state detectors
(180.2520) Microscopy : Fluorescence microscopy
(230.6120) Optical devices : Spatial light modulators
(300.2530) Spectroscopy : Fluorescence, laser-induced
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Spectroscopic Diagnostics

Original Manuscript: August 18, 2010
Revised Manuscript: October 14, 2010
Manuscript Accepted: November 8, 2010
Published: November 15, 2010

Virtual Issues
November 16, 2010 Spotlight on Optics

Ryan A. Colyer, Giuseppe Scalia, Ivan Rech, Angelo Gulinatti, Massimo Ghioni, Sergio Cova, Shimon Weiss, and Xavier Michalet, "High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array," Biomed. Opt. Express 1, 1408-1431 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Weiss, “Fluorescence spectroscopy of single biomolecules,” Science 283(5408), 1676–1683 (1999). [CrossRef] [PubMed]
  2. X. Michalet, S. Weiss, and M. Jäger, “Single-molecule fluorescence studies of protein folding and conformational dynamics,” Chem. Rev. 106(5), 1785–1813 (2006). [CrossRef] [PubMed]
  3. N. L. Thompson, “Fluorescence Correlation Spectroscopy,” in Topics in Fluorescence Spectroscopy, Vol 1: Techniques, J.R. Lakowicz, ed. (Plenum Press, New York, 1991).
  4. O. Krichevsky and G. Bonnet, “Fluorescence correlation spectroscopy: the technique and its applications,” Rep. Prog. Phys. 65(2), 251–297 (2002). [CrossRef]
  5. E. Haustein and P. Schwille, “Fluorescence correlation spectroscopy: novel variations of an established technique,” Annu. Rev. Biophys. Biomol. Struct. 36(1), 151–169 (2007). [CrossRef] [PubMed]
  6. M. Gösch, H. Blom, S. Anderegg, K. Korn, P. Thyberg, M. Wells, T. Lasser, R. Rigler, A. Magnusson, and S. Hård, “Parallel dual-color fluorescence cross-correlation spectroscopy using diffractive optical elements,” J. Biomed. Opt. 10(5), 054008 (2005). [CrossRef] [PubMed]
  7. M. Gösch, A. Serov, T. Anhut, T. Lasser, A. Rochas, P.-A. Besse, R. S. Popovic, H. Blom, and R. Rigler, “Parallel single molecule detection with a fully integrated single-photon 2x2 CMOS detector array,” J. Biomed. Opt. 9(5), 913–921 (2004). [CrossRef] [PubMed]
  8. M. Burkhardt and P. Schwille, “Electron multiplying CCD based detection for spatially resolved fluorescence correlation spectroscopy,” Opt. Express 14(12), 5013–5020 (2006). [CrossRef] [PubMed]
  9. D. R. Sisan, R. Arevalo, C. Graves, R. McAllister, and J. S. Urbach, “Spatially resolved fluorescence correlation spectroscopy using a spinning disk confocal microscope,” Biophys. J. 91(11), 4241–4252 (2006). [CrossRef] [PubMed]
  10. B. Kannan, L. Guo, T. Sudhaharan, S. Ahmed, I. Maruyama, and T. Wohland, “Spatially resolved total internal reflection fluorescence correlation microscopy using an electron multiplying charge-coupled device camera,” Anal. Chem. 79(12), 4463–4470 (2007). [CrossRef] [PubMed]
  11. B. Kannan, J. Y. Har, P. Liu, I. Maruyama, J. L. Ding, and T. Wohland, “Electron multiplying charge-coupled device camera based fluorescence correlation spectroscopy,” Anal. Chem. 78(10), 3444–3451 (2006). [CrossRef] [PubMed]
  12. T. Wohland, X. Shi, J. Sankaran, and E. H. K. Stelzer, “Single plane illumination fluorescence correlation spectroscopy (SPIM-FCS) probes inhomogeneous three-dimensional environments,” Opt. Express 18(10), 10627–10641 (2010). [CrossRef] [PubMed]
  13. F. Guerrieri, S. Tisa, A. Tosi, and F. Zappa, “Two-dimensional SPAD imaging camera for photon counting,” IEEE Photonics Journal 2(5), 759–774 (2010). [CrossRef]
  14. C. Niclass, C. Favi, T. Kluter, M. Gersbach, and E. Charbon, “A 128 x 128 single-photon image sensor with column-level 10-bit time-to-digital converter array,” IEEE J. Solid-state Circuits 43(12), 2977–2989 (2008). [CrossRef]
  15. C. Niclass, A. Rochas, P. A. Besse, R. Popovic, and E. Charbon, “A 4 mu s integration time imager based on CMOS single photon avalanche diode technology,” Sens. Actuators A Phys. 130-131, 273–281 (2006). [CrossRef]
  16. I. Rech, D. Resnati, S. Marangoni, M. Ghioni, and S. Cova, “Compact-eight channel photon counting module with monolithic array detector,” Proc. SPIE 6771, 677113 (2007).
  17. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, “Computer-generated holographic optical tweezer arrays,” Rev. Sci. Instrum. 72(3), 1810–1816 (2001). [CrossRef]
  18. H. Dai, K. Xu, Y. Liu, X. Wang, and J. Liu, “Characteristics of LCoS phase-only spatial light modulator and its applications,” Opt. Commun. 238(4-6), 269–276 (2004). [CrossRef]
  19. X. W. Wang, H. Dai, and K. Xu, “Tunable reflective lens array based on liquid crystal on silicon,” Opt. Express 13(2), 352–357 (2005). [CrossRef] [PubMed]
  20. M. Polin, K. Ladavac, S. H. Lee, Y. Roichman, and D. G. Grier, “Optimized holographic optical traps,” Opt. Express 13(15), 5831–5845 (2005). [CrossRef] [PubMed]
  21. X. Michalet, A. Cheng, J. Antelman, M. Suyama, K. Arisaka, and S. Weiss, “Hybrid photodetector for single-molecule spectroscopy and microscopy,” Proc. SPIE 6862, 68620F (2008).
  22. I. Rech, S. Marangoni, D. Resnati, M. Ghioni, and S. Cova, “Multipixel single-photon avalanche diode array for parallel photon counting applications,” J. Mod. Opt. 56(2), 326–333 (2009). [CrossRef]
  23. T. A. Laurence, S. Fore, and T. Huser, “Fast, flexible algorithm for calculating photon correlations,” Opt. Lett. 31(6), 829–831 (2006). [CrossRef] [PubMed]
  24. M. J. Culbertson and D. L. Burden, “A distributed algorithm for multi-tau autocorrelation,” Rev. Sci. Instrum. 78(4), 044102 (2007). [CrossRef] [PubMed]
  25. D. N. Fittinghoff, P. W. Wiseman, and J. A. Squier, “Widefield multiphoton and temporally decorrelated multifocal multiphoton microscopy,” Opt. Express 7(8), 273–279 (2000). [CrossRef] [PubMed]
  26. J. Bewersdorf, R. Pick, and S. W. Hell, “Multifocal multiphoton microscopy,” Opt. Lett. 23(9), 655–657 (1998). [CrossRef] [PubMed]
  27. A. H. Buist, M. Müller, J. A. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multipoint excitation,” J. Microsc. 192(2), 217–226 (1998). [CrossRef]
  28. R. Heintzmann, Q. S. Hanley, D. Arndt-Jovin, and T. M. Jovin, “A dual path programmable array microscope (PAM): simultaneous acquisition of conjugate and non-conjugate images,” J. Microsc. 204(2), 119–135 (2001). [CrossRef] [PubMed]
  29. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24(9), 608–610 (1999). [CrossRef] [PubMed]
  30. R. A. Colyer, G. Scalia, T. Kim, I. Rech, D. Resnati, S. Marangoni, M. Ghioni, S. Cova, S. Weiss, and X. Michalet, “High-throughput multispot single-molecule spectroscopy,” Proc. SPIE 7571, 75710G (2010).
  31. M. Polin, K. Ladavac, S. H. Lee, Y. Roichman, and D. G. Grier, “Optimized holographic optical traps,” Opt. Express 13(15), 5831–5845 (2005). [CrossRef] [PubMed]
  32. M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. 7th ed. (Cambridge University Press, Cambridge, 1999).
  33. D. R. Lide, ed., CRC Handbook of Chemistry & Physics. 82 ed. (CRC Press. 2001–2002), p. 2664.
  34. C. B. Müller, A. Loman, V. Pacheco, F. Koberling, D. Willbold, W. Richtering, and J. Enderlein, “Precise measurement of diffusion by multi-color dual-focus fluorescence correlation spectroscopy,” Europhys. Lett. 83(4), 46001 (2008). [CrossRef]
  35. P. Kask, R. Günther, and P. Axhausen, “Statistical accuracy in fluorescence fluctuation experiments,” Eur. Biophys. J. 25(3), 163–169 (1997). [CrossRef]
  36. H. Qian, “On the statistics of fluorescence correlation spectroscopy,” Biophys. Chem. 38(1-2), 49–57 (1990). [CrossRef] [PubMed]
  37. S. Saffarian and E. L. Elson, “Statistical analysis of fluorescence correlation spectroscopy: the standard deviation and bias,” Biophys. J. 84(3), 2030–2042 (2003). [CrossRef] [PubMed]
  38. R. Verberk and M. Orrit, “Photon statistics in the fluorescence of single molecules and nanocrystals: correlation functions versus distributions of on- and off-times,” J. Chem. Phys. 119(4), 2214–2222 (2003). [CrossRef]
  39. T. Wohland, R. Rigler, and H. Vogel, “The standard deviation in fluorescence correlation spectroscopy,” Biophys. J. 80(6), 2987–2999 (2001). [CrossRef] [PubMed]
  40. X. Michalet, T. D. Lacoste, and S. Weiss, “Ultrahigh-resolution colocalization of spectrally separable point-like fluorescent probes,” Methods 25(1), 87–102 (2001). [CrossRef] [PubMed]
  41. A. N. Kapanidis, E. Margeat, T. A. Laurence, S. Doose, S. O. Ho, J. Mukhopadhyay, E. Kortkhonjia, V. Mekler, R. H. Ebright, and S. Weiss, “Retention of transcription initiation factor sigma70 in transcription elongation: single-molecule analysis,” Mol. Cell 20(3), 347–356 (2005). [CrossRef] [PubMed]
  42. S. Weiss, “Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy,” Nat. Struct. Biol. 7(9), 724–729 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited