OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 5 — Dec. 1, 2010
  • pp: 1443–1459

Effects of acetazolamide on the micro- and macro-vascular cerebral hemodynamics: a diffuse optical and transcranial doppler ultrasound study

Peyman Zirak, Raquel Delgado-Mederos, Joan Martí-Fàbregas, and Turgut Durduran  »View Author Affiliations


Biomedical Optics Express, Vol. 1, Issue 5, pp. 1443-1459 (2010)
http://dx.doi.org/10.1364/BOE.1.001443


View Full Text Article

Enhanced HTML    Acrobat PDF (1191 KB) | SpotlightSpotlight on Optics





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Acetazolamide (ACZ) was used to stimulate the cerebral vasculature on ten healthy volunteers to assess the cerebral vasomotor reactivity (CVR). We have combined near infrared spectroscopy (NIRS), diffuse correlation spectroscopy (DCS) and transcranial Doppler (TCD) technologies to non-invasively assess CVR in real-time by measuring oxy- and deoxy-hemoglobin concentrations, using NIRS, local cerebral blood flow (CBF), using DCS, and blood flow velocity (CBFV) in the middle cerebral artery, using TCD. Robust and persistent increases in oxy-hemoglobin concentration, CBF and CBFV were observed. A significant agreement was found between macro-vascular (TCD) and micro-vascular (DCS) hemodynamics, between the NIRS and TCD data, and also within NIRS and DCS results. The relative cerebral metabolic rate of oxygen, rCMRO2, was also determined, and no significant change was observed. Our results showed that the combined diffuse optics-ultrasound technique is viable to follow (CVR) and rCMRO2 changes in adults, continuously, at the bed-side and in real time.

© 2010 OSA

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.6480) Medical optics and biotechnology : Spectroscopy, speckle
(170.7170) Medical optics and biotechnology : Ultrasound
(290.4210) Scattering : Multiple scattering

ToC Category:
Neuroscience and Brain Imaging

History
Original Manuscript: October 1, 2010
Revised Manuscript: November 7, 2010
Manuscript Accepted: November 7, 2010
Published: November 19, 2010

Virtual Issues
December 10, 2010 Spotlight on Optics

Citation
Peyman Zirak, Raquel Delgado-Mederos, Joan Martí-Fàbregas, and Turgut Durduran, "Effects of acetazolamide on the micro- and macro-vascular cerebral hemodynamics: a diffuse optical and transcranial doppler ultrasound study," Biomed. Opt. Express 1, 1443-1459 (2010)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-5-1443


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. A. Lassen, “Cerebral blood flow and oxygen consumption in man,” Physiol. Rev. 39(2), 183–238 (1959). [PubMed]
  2. M. Fog, “Cerebral circulation: the reaction of the pial arteries to a fall in blood pressure,” Arch. Neurol. Psychiatry 37, 351 (1937).
  3. G. I. Mchedlishvili, N. P. Mitagvaria, and L. G. Ormotsadze, “Vascular mechanisms controlling a constant blood supply to the brain (“autoregulation”),” Stroke 4(5), 742–750 (1973). [PubMed]
  4. B. Widder, B. Kleiser, and H. Krapf, “Course of cerebrovascular reactivity in patients with carotid artery occlusions,” Stroke 25(10), 1963–1967 (1994). [PubMed]
  5. S. Vorstrup, L. Henriksen, and O. B. Paulson, “Effect of acetazolamide on cerebral blood flow and cerebral metabolic rate for oxygen,” J. Clin. Invest. 74(5), 1634–1639 (1984). [CrossRef] [PubMed]
  6. H. W. Schytz, T. Wienecke, L. T. Jensen, J. Selb, D. A. Boas, and M. Ashina, “Changes in cerebral blood flow after acetazolamide: an experimental study comparing near-infrared spectroscopy and SPECT,” Eur. J. Neurol. 16(4), 461–467 (2009). [CrossRef] [PubMed]
  7. G. Settakis, C. Molnár, L. Kerényi, J. Kollár, D. Legemate, L. Csiba, and B. Fülesdi, “Acetazolamide as a vasodilatory stimulus in cerebrovascular diseases and in conditions affecting the cerebral vasculature,” Eur. J. Neurol. 10(6), 609–620 (2003). [CrossRef] [PubMed]
  8. A. Piepgras, P. Schmiedek, G. Leinsinger, R. L. Haberl, C. M. Kirsch, and K. M. Einhäupl, “A simple test to assess cerebrovascular reserve capacity using transcranial Doppler sonography and acetazolamide,” Stroke 21(9), 1306–1311 (1990). [PubMed]
  9. M. I. Chimowitz, A. J. Furlan, S. C. Jones, C. A. Sila, R. L. Lorig, L. Paranandi, and G. J. Beck, “Transcranial Doppler assessment of cerebral perfusion reserve in patients with carotid occlusive disease and no evidence of cerebral infarction,” Neurology 43(2), 353–357 (1993). [PubMed]
  10. W. Sorteberg, K. F. Lindegaard, K. Rootwelt, A. Dahl, R. Nyberg-Hansen, D. Russell, and H. Nornes, “Effect of acetazolamide on cerebral artery blood velocity and regional cerebral blood flow in normal subjects,” Acta Neurochir. (Wien) 97(3-4), 139–145 (1989). [CrossRef] [PubMed]
  11. P. Démolis, G. Florence, L. Thomas, Y. R. Tran Dinh, J. F. Giudicelli, J. Seylaz, and N. J. Alkayed, “Is the acetazolamide test valid for quantitative assessment of maximal cerebral autoregulatory vasodilation? An experimental study,” Stroke 31(2), 508–515 (2000). [PubMed]
  12. U. Sabatini, P. Celsis, G. Viallard, A. Rascol, and J. P. Marc-Vergnes, “Quantitative assessment of cerebral blood volume by single-photon emission computed tomography,” Stroke 22(3), 324–330 (1991). [PubMed]
  13. H. Yamaguchi, H. Yamauchi, S. Hazama, H. Hamamoto, and N. Inoue, “Correlation between cerebral oxygen metabolism and cerebral blood flow simultaneously measured before and after acetazolamide administration,” J. Biomed. Opt. 4(4), 418 (1999). [CrossRef]
  14. Y. F. Yen, A. S. Field, E. M. Martin, N. Ari, J. H. Burdette, D. M. Moody, and A. M. Takahashi, “Test-retest reproducibility of quantitative CBF measurements using FAIR perfusion MRI and acetazolamide challenge,” Magn. Reson. Med. 47(5), 921–928 (2002). [CrossRef] [PubMed]
  15. J. A. Detre, O. B. Samuels, D. C. Alsop, J. B. Gonzalez-At, S. E. Kasner, and E. C. Raps, “Noninvasive magnetic resonance imaging evaluation of cerebral blood flow with acetazolamide challenge in patients with cerebrovascular stenosis,” J. Magn. Reson. Imaging 10(5), 870–875 (1999). [CrossRef] [PubMed]
  16. B. Weber, G. Westera, V. Treyer, C. Burger, N. Khan, and A. Buck, “Constant-infusion H(2)15O PET and acetazolamide challenge in the assessment of cerebral perfusion status,” J. Nucl. Med. 45(8), 1344–1350 (2004). [PubMed]
  17. M. Matteis, E. Troisi, B. C. Monaldo, C. Caltagirone, and M. Silvestrini, “Age and sex differences in cerebral hemodynamics: a transcranial Doppler study,” Stroke 29(5), 963–967 (1998). [PubMed]
  18. B. M. Eicke, E. Buss, R. R. Bähr, G. Hajak, and W. Paulus, “Influence of acetazolamide and CO2 on extracranial flow volume and intracranial blood flow velocity,” Stroke 30(1), 76–80 (1999). [PubMed]
  19. B. Fülesdi, M. Limburg, L. Oláh, D. Bereczki, L. Csiba, and J. Kollár, “Lack of gender difference in acetazolamide-induced cerebral vasomotor reactivity in patients suffering from type-1 diabetes mellitus,” Acta Diabetol. 38(3), 107–112 (2001). [CrossRef] [PubMed]
  20. A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human brain function,” Trends Neurosci. 20(10), 435–442 (1997). [CrossRef] [PubMed]
  21. E. M. Hillman, “Optical brain imaging in vivo: techniques and applications from animal to man,” J. Biomed. Opt. 12(5), 051402 (2007). [CrossRef] [PubMed]
  22. T. Durduran, R. Choe, W. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys. 73(7), 076701 (2010). [CrossRef]
  23. E. Keller, M. Wolf, M. Martin, and Y. Yonekawa, “Estimation of cerebral oxygenation and hemodynamics in cerebral vasospasm using indocyaningreen dye dilution and near infrared spectroscopy: a case report,” J. Neurosurg. Anesthesiol. 13(1), 43–48 (2001). [CrossRef] [PubMed]
  24. B. P. Wagner, S. Gertsch, R. A. Ammann, and J. Pfenninger, “Reproducibility of the blood flow index as noninvasive, bedside estimation of cerebral blood flow,” Intensive Care Med. 29(2), 196–200 (2003). [PubMed]
  25. D. A. Boas, G. Strangman, J. P. Culver, R. D. Hoge, G. Jasdzewski, R. A. Poldrack, B. R. Rosen, and J. B. Mandeville, “Can the cerebral metabolic rate of oxygen be estimated with near-infrared spectroscopy?” Phys. Med. Biol. 48(15), 2405–2418 (2003). [CrossRef] [PubMed]
  26. I. Tachtsidis, T. Leung, D. Delpy, C. Elwell, M. Tisdall, and M. Smith, “Cerebral blood flow assessment with indocyanine green bolus transit detection by near-infrared spectroscopy before and after acetazolamide challenge in humans,” Biomedical Optics (2006).
  27. M. Kaminogo, A. Ichikura, S. Shibata, T. Toba, and M. Yonekura, “Effect of acetazolamide on regional cerebral oxygen saturation and regional cerebral blood flow,” Stroke 26(12), 2358–2360 (1995). [PubMed]
  28. M. Holzschuh, C. Woertgen, C. Metz, and A. Brawanski, “Comparison of changes in cerebral blood flow and cerebral oxygen saturation measured by near infrared spectroscopy (NIRS) after acetazolamide,” Acta Neurochir. (Wien) 139(1), 58–62 (1997). [CrossRef] [PubMed]
  29. D. A. Boas, L. E. Campbell, and A. G. Yodh, “Scattering and imaging with diffusing temporal field correlations,” Phys. Rev. Lett. 75(9), 1855–1858 (1995). [CrossRef] [PubMed]
  30. D. Boas and A. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” J. Opt. Soc. Am. A 14(1), 192–215 (1997). [CrossRef]
  31. E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17(15), 12571–12581 (2009). [CrossRef] [PubMed]
  32. N. Roche-Labarbe, F. Wallois, E. Ponchel, G. Kongolo, and R. Grebe, “Coupled oxygenation oscillation measured by NIRS and intermittent cerebral activation on EEG in premature infants,” Neuroimage 36(3), 718–727 (2007). [CrossRef] [PubMed]
  33. T. Durduran, G. Yu, M. G. Burnett, J. A. Detre, J. H. Greenberg, J. Wang, C. Zhou, and A. G. Yodh, “Diffuse optical measurement of blood flow, blood oxygenation, and metabolism in a human brain during sensorimotor cortex activation,” Opt. Lett. 29(15), 1766–1768 (2004). [CrossRef] [PubMed]
  34. J. Li, G. Dietsche, D. Iftime, S. E. Skipetrov, G. Maret, T. Elbert, B. Rockstroh, and T. Gisler, “Noninvasive detection of functional brain activity with near-infrared diffusing-wave spectroscopy,” J. Biomed. Opt. 10(4), 044002 (2005). [CrossRef] [PubMed]
  35. T. Durduran, C. Zhou, E. M. Buckley, M. N. Kim, G. Yu, R. Choe, J. W. Gaynor, T. L. Spray, S. M. Durning, S. E. Mason, L. M. Montenegro, S. C. Nicolson, R. A. Zimmerman, M. E. Putt, J. Wang, J. H. Greenberg, J. A. Detre, A. G. Yodh, and D. J. Licht, “Optical measurement of cerebral hemodynamics and oxygen metabolism in neonates with congenital heart defects,” J. Biomed. Opt. 15(3), 037004 (2010). [CrossRef] [PubMed]
  36. M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010). [CrossRef] [PubMed]
  37. T. Durduran, C. Zhou, B. L. Edlow, G. Yu, R. Choe, M. N. Kim, B. L. Cucchiara, M. E. Putt, Q. Shah, S. E. Kasner, J. H. Greenberg, A. G. Yodh, and J. A. Detre, “Transcranial optical monitoring of cerebrovascular hemodynamics in acute stroke patients,” Opt. Express 17(5), 3884–3902 (2009). [CrossRef] [PubMed]
  38. A. L. Carney and E. M. Anderson, “The system approach to brain blood flow,” Adv. Neurol. 30, 1–30 (1981). [PubMed]
  39. R. Roski, R. F. Spetzler, M. Owen, K. Chandar, J. G. Sholl, and F. E. Nulsen, “Reversal of seven-year old visual field defect with extracranial-intracranial arterial anastomosis,” Surg. Neurol. 10(4), 267–268 (1978). [PubMed]
  40. P. Frykholm, J. L. R. Andersson, J. Valtysson, H. C. Silander, L. Hillered, L. Persson, Y. Olsson, W. R. Yu, G. Westerberg, Y. Watanabe, B. Långström, and P. Enblad, “A metabolic threshold of irreversible ischemia demonstrated by PET in a middle cerebral artery occlusion-reperfusion primate model,” Acta Neurol. Scand. 102(1), 18–26 (2000). [CrossRef] [PubMed]
  41. J. B. Posner and F. Plum, “The toxic effects of carbon dioxide and acetazolamide in hepatic encephalopathy,” J. Clin. Invest. 39(8), 1246–1258 (1960). [CrossRef] [PubMed]
  42. B. E. Laux and M. E. Raichle, “The effect of acetazolamide on cerebral blood flow and oxygen utilization in the rhesus monkey,” J. Clin. Invest. 62(3), 585–592 (1978). [CrossRef] [PubMed]
  43. B. Kleiser and B. Widder, “Course of carotid artery occlusions with impaired cerebrovascular reactivity,” Stroke 23(2), 171–174 (1992). [PubMed]
  44. W. J. Powers, L. W. Tempel, and R. L. Grubb., “Influence of cerebral hemodynamics on stroke risk: one-year follow-up of 30 medically treated patients,” Ann. Neurol. 25(4), 325–330 (1989). [CrossRef] [PubMed]
  45. D. L. Ehrenreich, R. A. Burns, R. W. Alman, and J. F. Fazekas, “Influence of acetazolamide on cerebral blood flow,” Arch. Neurol. 5, 227–232 (1961). [PubMed]
  46. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, “Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,” J. Cereb. Blood Flow Metab. 23(8), 911–924 (2003). [CrossRef] [PubMed]
  47. V. Toronov, E. D’Amico, D. Hueber, E. Gratton, B. Barbieri, and A. Webb, “Optimization of the signal-to-noise ratio of frequency-domain instrumentation for near-infrared spectro-imaging of the human brain,” Opt. Express 11(21), 2717–2729 (2003). [CrossRef] [PubMed]
  48. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992). [CrossRef] [PubMed]
  49. P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. Reynolds, and D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol. 316, 143–153 (1992). [PubMed]
  50. G. Strangman, M. A. Franceschini, and D. A. Boas, “Factors affecting the accuracy of near-infrared spectroscopy concentration calculations for focal changes in oxygenation parameters,” Neuroimage 18(4), 865–879 (2003). [CrossRef] [PubMed]
  51. A. Duncan, J. H. Meek, M. Clemence, C. E. Elwell, L. Tyszczuk, M. Cope, and D. T. Delpy, “Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy,” Phys. Med. Biol. 40(2), 295–304 (1995). [CrossRef] [PubMed]
  52. S. Kohri, Y. Hoshi, M. Tamura, C. Kato, Y. Kuge, and N. Tamaki, “Quantitative evaluation of the relative contribution ratio of cerebral tissue to near-infrared signals in the adult human head: a preliminary study,” Physiol. Meas. 23(2), 301–312 (2002). [CrossRef] [PubMed]
  53. J. Mayhew, D. Johnston, J. Martindale, M. Jones, J. Berwick, and Y. Zheng, “Increased oxygen consumption following activation of brain: theoretical footnotes using spectroscopic data from barrel cortex,” Neuroimage 13(6), 975–987 (2001). [CrossRef] [PubMed]
  54. A. Torricelli, A. Pifferi, P. Taroni, E. Giambattistelli, and R. Cubeddu, “In vivo optical characterization of human tissues from 610 to 1010 nm by time-resolved reflectance spectroscopy,” Phys. Med. Biol. 46(8), 2227–2237 (2001). [CrossRef] [PubMed]
  55. K. Hornik, “The R FAQ,” (2010). ISBN 3–900051–08–9.
  56. R. L. Grubb, M. E. Raichle, J. O. Eichling, and M. M. Ter-Pogossian, “The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time,” Stroke 5(5), 630–639 (1974). [PubMed]
  57. T. S. Leung, I. Tachtsidis, M. M. Tisdall, C. Pritchard, M. Smith, and C. E. Elwell, “Estimating a modified Grubb’s exponent in healthy human brains with near infrared spectroscopy and transcranial Doppler,” Physiol. Meas. 30(1), 1–12 (2009). [CrossRef] [PubMed]
  58. P. T. Ulrich, T. Becker, and O. S. Kempski, “Correlation of cerebral blood flow and MCA flow velocity measured in healthy volunteers during acetazolamide and CO2 stimulation,” J. Neurol. Sci. 129(2), 120–130 (1995). [CrossRef] [PubMed]
  59. A. Dahl, K. F. Lindegaard, D. Russell, R. Nyberg-Hansen, K. Rootwelt, W. Sorteberg, and H. Nornes, “A comparison of transcranial Doppler and cerebral blood flow studies to assess cerebral vasoreactivity,” Stroke 23(1), 15–19 (1992). [PubMed]
  60. T. Kreisig, P. Schmiedek, G. Leinsinger, K. Einhäupl, and E. Moser, “[133Xe-DSPECT: normal values of resting cerebral blood flow and reserve capacity],” Nucl. Med. (Stuttg.) 26(5), 192–197 (1987). [PubMed]
  61. A. Dahl, D. Russell, R. Nyberg-Hansen, K. Rootwelt, and P. Mowinckel, “Simultaneous assessment of vasoreactivity using transcranial Doppler ultrasound and cerebral blood flow in healthy subjects,” J. Cereb. Blood Flow Metab. 14(6), 974–981 (1994). [PubMed]
  62. I. Tachtsidis, M. Tisdall, D. T. Delpy, M. Smith, and C. E. Elwell, “Measurement of cerebral tissue oxygenation in young healthy volunteers during acetazolamide provocation: a transcranial Doppler and near-infrared spectroscopy investigation,” Adv. Exp. Med. Biol. 614, 389–396 (2008). [CrossRef] [PubMed]
  63. E. M. Buckley, N. M. Cook, T. Durduran, M. N. Kim, C. Zhou, R. Choe, G. Yu, S. Schultz, C. M. Sehgal, D. J. Licht, P. H. Arger, M. E. Putt, H. H. Hurt, and A. G. Yodh, “Cerebral hemodynamics in preterm infants during positional intervention measured with diffuse correlation spectroscopy and transcranial Doppler ultrasound,” Opt. Express 17(15), 12571–12581 (2009). [CrossRef] [PubMed]
  64. N. Roche-Labarbe, S. A. Carp, A. Surova, M. Patel, D. A. Boas, P. E. Grant, and M. A. Franceschini, “Noninvasive optical measures of CBV, StO(2), CBF index, and rCMRO(2) in human premature neonates’ brains in the first six weeks of life,” Hum. Brain Mapp. 31(3), 341–352 (2010). [PubMed]
  65. W. Sorteberg, K. F. Lindegaard, K. Rootwelt, A. Dahl, D. Russell, R. Nyberg-Hansen, and H. Nornes, “Blood velocity and regional blood flow in defined cerebral artery systems,” Acta Neurochir. (Wien) 97(1-2), 47–52 (1989). [CrossRef] [PubMed]
  66. H. A. Kontos, “Validity of cerebral arterial blood flow calculations from velocity measurements,” Stroke 20(1), 1–3 (1989). [PubMed]
  67. T. L. Davis, K. K. Kwong, R. M. Weisskoff, and B. R. Rosen, “Calibrated functional MRI: mapping the dynamics of oxidative metabolism,” Proc. Natl. Acad. Sci. U.S.A. 95(4), 1834–1839 (1998). [CrossRef] [PubMed]
  68. R. D. Hoge, J. Atkinson, B. Gill, G. R. Crelier, S. Marrett, and G. B. Pike, “Linear coupling between cerebral blood flow and oxygen consumption in activated human cortex,” Proc. Natl. Acad. Sci. U.S.A. 96(16), 9403–9408 (1999). [CrossRef] [PubMed]
  69. S. G. Kim, E. Rostrup, H. B. Larsson, S. Ogawa, and O. B. Paulson, “Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation,” Magn. Reson. Med. 41(6), 1152–1161 (1999). [CrossRef] [PubMed]
  70. S. Carp, G. Dai, D. Boas, M. Franceschini, and Y. Kim, “Validation of diffuse correlation spectroscopy measurements of rodent cerebral blood flow with simultaneous arterial spin labeling mri; towards mri-optical continuous cerebral metabolic monitoring,” Biomed. Opt. Express 1(2), 553–565 (2010). [CrossRef]
  71. L. Gagnon, M. Desjardins, J. Jehanne-Lacasse, L. Bherer, and F. Lesage, “Investigation of diffuse correlation spectroscopy in multi-layered media including the human head,” Opt. Express 16(20), 15514–15530 (2008). [CrossRef] [PubMed]
  72. M. N. Kim, T. Durduran, S. Frangos, B. L. Edlow, E. M. Buckley, H. E. Moss, C. Zhou, G. Yu, R. Choe, E. Maloney-Wilensky, R. L. Wolf, M. S. Grady, J. H. Greenberg, J. M. Levine, A. G. Yodh, J. A. Detre, and W. A. Kofke, “Noninvasive measurement of cerebral blood flow and blood oxygenation using near-infrared and diffuse correlation spectroscopies in critically brain-injured adults,” Neurocrit. Care 12(2), 173–180 (2010). [CrossRef] [PubMed]
  73. M. L. Dyken, E. Klatte, O. J. Kolar, and C. Surgeon, “Complete occlusion of common or internal carotid arteries. Clinical significance,” Arch. Neurol. 30(5), 343–346 (1974). [PubMed]
  74. R. Cote, H. J. Barnett, and D. W. Taylor, “Internal carotid occlusion: a prospective study,” Stroke 14(6), 898–902 (1983). [PubMed]
  75. S. Durham, H. Smith, M. Rutigliano, and H. Yonas, “Assessment of cerebral vasoreactivity and stroke risk using Xe-CT acetazolamide challenge,” Stroke 22, 138 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited