OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 5 — Dec. 1, 2010
  • pp: 1460–1471

Interfaces detection after corneal refractive surgery by low coherence optical interferometry

I. Verrier, C. Veillas, T. Lépine, F. Nguyen, G. Thuret, and P. Gain  »View Author Affiliations


Biomedical Optics Express, Vol. 1, Issue 5, pp. 1460-1471 (2010)
http://dx.doi.org/10.1364/BOE.1.001460


View Full Text Article

Enhanced HTML    Acrobat PDF (1305 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The detection of refractive corneal surgery by LASIK, during the storage of corneas in Eye Banks will become a challenge when the numerous operated patients will arrive at the age of cornea donation. The subtle changes of corneal structure and refraction are highly suspected to negatively influence clinical results in recipients of such corneas. In order to detect LASIK cornea interfaces we developed a low coherence interferometry technique using a broadband continuum source. Real time signal recording, without moving any optical elements and without need of a Fourier Transform operation, combined with good measurement resolution is the main asset of this interferometer. The associated numerical processing is based on a method initially used in astronomy and offers an optimal correlation signal without the necessity to image the whole cornea that is time consuming. The detection of corneal interfaces - both outer and inner surface and the buried interface corresponding to the surgical wound – is then achieved directly by the innovative combination of interferometry and this original numerical process.

© 2010 OSA

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.3180) Instrumentation, measurement, and metrology : Interferometry
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(330.7327) Vision, color, and visual optics : Visual optics, ophthalmic instrumentation
(330.7335) Vision, color, and visual optics : Visual optics, refractive surgery

ToC Category:
Ophthalmology Applications

History
Original Manuscript: September 21, 2010
Revised Manuscript: November 10, 2010
Manuscript Accepted: November 12, 2010
Published: November 19, 2010

Citation
I. Verrier, C. Veillas, T. Lépine, F. Nguyen, G. Thuret, and P. Gain, "Interfaces detection after corneal refractive surgery by low coherence optical interferometry," Biomed. Opt. Express 1, 1460-1471 (2010)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-5-1460


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. G. Pallikaris, M. E. Papatzanaki, D. S. Siganos, and M. K. Tsilimbaris, “A corneal flap technique for laser in situ keratomileusis. Human studies,” Arch. Ophthalmol. 109(12), 1699–1702 (1991). [PubMed]
  2. H. P. Sandoval, L. E. de Castro, D. T. Vroman, and K. D. Solomon, “Refractive Surgery Survey 2004,” J. Cataract Refract. Surg. 31(1), 221–233 (2005). [CrossRef] [PubMed]
  3. M. Vesaluoma, J. Pérez-Santonja, W. M. Petroll, T. Linna, J. Alió, and T. Tervo, “Corneal stromal changes induced by myopic LASIK,” Invest. Ophthalmol. Vis. Sci. 41(2), 369–376 (2000). [PubMed]
  4. G. D. Kymionis, N. Tsiklis, A. I. Pallikaris, V. Diakonis, G. Hatzithanasis, D. Kavroulaki, M. Jankov, and I. G. Pallikaris, “Long-term results of superficial laser in situ keratomileusis after ultrathin flap creation,” J. Cataract Refract. Surg. 32(8), 1276–1280 (2006). [CrossRef] [PubMed]
  5. G. D. Kymionis, N. Tsiklis, A. I. Pallikaris, D. I. Bouzoukis, and I. G. Pallikaris, “Fifteen-year follow-up after LASIK: case report,” J. Refract. Surg. 23(9), 937–940 (2007). [PubMed]
  6. M. J. Maldonado, L. Ruiz-Oblitas, J. M. Munuera, D. Aliseda, A. García-Layana, and J. Moreno-Montañés, “Optical coherence tomography evaluation of the corneal cap and stromal bed features after laser in situ keratomileusis for high myopia and astigmatism,” Ophthalmology 107(1), 81–87, discussion 88 (2000). [CrossRef] [PubMed]
  7. R. J. Farias, A. Parolim, and L. B. Sousa, “[Corneal transplant utilizing a corneal graft that had undergone laser surgery--case report],” Arq. Bras. Oftalmol. 68(2), 266–269 (2005). [PubMed]
  8. A. Michaeli-Cohen, A. C. Lambert, F. Coloma, and D. S. Rootman, “Two cases of a penetrating keratoplasty with tissue from a donor who had undergone LASIK surgery,” Cornea 21(1), 111–113 (2002). [CrossRef] [PubMed]
  9. S. Langner, H. Martin, T. Terwee, S. A. Koopmans, P. C. Krüger, N. Hosten, K. P. Schmitz, R. F. Guthoff, and O. Stachs, “7.1T MRI to Assess the Anterior Segment of the Eye,” Invest. Ophthalmol. Vis. Sci. 4, (2010), doi:. [CrossRef] [PubMed]
  10. Y. Zeng, Y. Liu, X. Liu, C. Chen, Y. Xia, M. Lu, and M. He, “Comparison of lens thickness measurements using the anterior segment optical coherence tomography and A-scan ultrasonography,” Invest. Ophthalmol. Vis. Sci. 50(1), 290–294 (2008). [CrossRef] [PubMed]
  11. P. Rosales, A. de Castro, I. Jiménez-Alfaro, and S. Marcos, “Intraocular lens alignment from Purkinje and Scheimpflug imaging,” Clin. Exp. Optom. 93(6), 400–408 (2010), doi:. [CrossRef] [PubMed]
  12. C. Wirbelauer, H. Aurich, and D. T. Pham, “Online optical coherence pachymetry to evaluate intraoperative ablation parameters in LASIK,” Graefes Arch. Clin. Exp. Ophthalmol. 245(6), 775–781 (2007). [CrossRef] [PubMed]
  13. M. J. Doughty and M. L. Zaman, “Human corneal thickness and its impact on intraocular pressure measures: a review and meta-analysis approach,” Surv. Ophthalmol. 44(5), 367–408 (2000). [CrossRef] [PubMed]
  14. S. G. Priglinger, A. S. Neubauer, C. A. May, C. S. Alge, A. H. Wolf, A. Mueller, K. Ludwig, A. Kampik, and U. Welge-Luessen, “Optical coherence tomography for the detection of laser in situ keratomileusis in donor corneas,” Cornea 22(1), 46–50 (2003). [CrossRef] [PubMed]
  15. A. H. Wolf, A. S. Neubauer, S. G. Priglinger, A. Kampik, and U. C. Welge-Luessen, “Detection of laser in situ keratomileusis in a postmortem eye using optical coherence tomography,” J. Cataract Refract. Surg. 30(2), 491–495 (2004). [CrossRef] [PubMed]
  16. A. S. Neubauer, S. G. Priglinger, M. J. Thiel, C. A. May, and U. C. Welge-Lüssen, “Sterile structural imaging of donor cornea by optical coherence tomography,” Cornea 21(5), 490–494 (2002). [CrossRef] [PubMed]
  17. R. C. Lin, Y. Li, M. Tang, M. McLain, A. M. Rollins, J. A. Izatt, and D. Huang, “Screening for previous refractive surgery in eye bank corneas by using optical coherence tomography,” Cornea 26(5), 594–599 (2007). [PubMed]
  18. G. Latour, G. Georges, L. S. Lamoine, C. Deumié, J. Conrath, and L. Hoffart, “Human graft cornea and laser incisions imaging with micrometer scale resolution full-field optical coherence tomography,” J. Biomed. Opt. 15(5), 056006 (2010). [CrossRef] [PubMed]
  19. W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt. Express 14(2), 726–735 (2006). [CrossRef] [PubMed]
  20. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27(20), 1800–1802 (2002). [CrossRef] [PubMed]
  21. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004). [CrossRef] [PubMed]
  22. J. M. Schmitt, “Optical Coherence Tomography (OCT): A review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999). [CrossRef]
  23. B. E. Bouma, and G. J. Tearney, Handbook of optical coherence tomography, (New York: Marcel Dekker, 2002).
  24. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25(11), 820–822 (2000). [CrossRef] [PubMed]
  25. Y. Park, T. J. Ahn, J. C. Kieffer, and J. Azaña, “Optical frequency domain reflectometry based on real-time Fourier transformation,” Opt. Express 15(8), 4597–4616 (2007). [CrossRef] [PubMed]
  26. K. Ben Houcine, M. Jacquot, I. Verrier, G. Brun, and C. Veillas, “Imaging through a scattering medium with an interferential spectrometer by selection of an amplitude modulation correlator,” Opt. Lett. 29(24), 2908–2910 (2004). [CrossRef] [PubMed]
  27. I. Verrier, C. Veillas, and T. Lépine, “Low coherence interferometry for central thickness measurement of rigid and soft contact lenses,” Opt. Express 17(11), 9157–9170 (2009). [CrossRef] [PubMed]
  28. V. Tombelaine, C. Lesvigne, P. Leproux, L. Grossard, V. Couderc, J. L. Auguste, J. M. Blondy, G. Huss, and P. H. Pioger, “Ultra wide band supercontinuum generation in air-silica holey fibers by SHG-induced modulation instabilities,” Opt. Express 13(19), 7399–7404 (2005). [CrossRef] [PubMed]
  29. I. Verrier, G. Brun, and J. P. Goure, “SISAM interferometer for distance measurements,” Appl. Opt. 36(25), 6225–6230 (1997). [CrossRef] [PubMed]
  30. L. Froehly and R. Leitgeb, “Scan-free optical correlations techniques: history and applications to optical coherence tomography,” J. Opt. 12(8), 084001 (2010), doi:. [CrossRef]
  31. Y. Watanabe, K. Yamada, and M. Sato, “Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography,” Opt. Express 14(12), 5201–5209 (2006). [CrossRef] [PubMed]
  32. D. G. Dawson, I. Schmack, G. P. Holley, G. O. Waring, H. E. Grossniklaus, and H. F. Edelhauser, “Interface fluid syndrome in human eye bank corneas after LASIK: causes and pathogenesis,” Ophthalmology 114(10), 1848–1859 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited