OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 1, Iss. 5 — Dec. 1, 2010
  • pp: 1491–1501

Full-range imaging of eye accommodation by high-speed long-depth range optical frequency domain imaging

Hiroyuki Furukawa, Hideaki Hiro-Oka, Nobuyuki Satoh, Reiko Yoshimura, Donghak Choi, Motoi Nakanishi, Akihito Igarashi, Hitoshi Ishikawa, Kohji Ohbayashi, and Kimiya Shimizu  »View Author Affiliations


Biomedical Optics Express, Vol. 1, Issue 5, pp. 1491-1501 (2010)
http://dx.doi.org/10.1364/BOE.1.001491


View Full Text Article

Enhanced HTML    Acrobat PDF (1045 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a high-speed long-depth range optical frequency domain imaging (OFDI) system employing a long-coherence length tunable source and demonstrate dynamic full-range imaging of the anterior segment of the eye including from the cornea surface to the posterior capsule of the crystalline lens with a depth range of 12 mm without removing complex conjugate image ambiguity. The tunable source spanned from 1260 to 1360 nm with an average output power of 15.8 mW. The fast A-scan rate of 20,000 per second provided dynamic OFDI and dependence of the whole anterior segment change on time following abrupt relaxation from the accommodated to the relaxed status, which was measured for a healthy eye and that with an intraocular lens.

© 2010 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Ophthalmology Applications

History
Original Manuscript: September 1, 2010
Revised Manuscript: November 18, 2010
Manuscript Accepted: November 19, 2010
Published: November 23, 2010

Citation
Hiroyuki Furukawa, Hideaki Hiro-Oka, Nobuyuki Satoh, Reiko Yoshimura, Donghak Choi, Motoi Nakanishi, Akihito Igarashi, Hitoshi Ishikawa, Kohji Ohbayashi, and Kimiya Shimizu, "Full-range imaging of eye accommodation by high-speed long-depth range optical frequency domain imaging," Biomed. Opt. Express 1, 1491-1501 (2010)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-1-5-1491


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt. 1(2), 157–173 (1996). [CrossRef]
  3. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117(1-2), 43–48 (1995). [CrossRef]
  4. G. Häusler and M. W. Lindner, “"Coherence Radar” and “Spectral Radar” - New Tools for Dermatological Diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998). [CrossRef]
  5. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002). [CrossRef] [PubMed]
  6. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003). [CrossRef] [PubMed]
  7. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003). [CrossRef] [PubMed]
  8. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  9. M. Wojtkowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Real-time in vivo imaging by high-speed spectral optical coherence tomography,” Opt. Lett. 28(19), 1745–1747 (2003). [CrossRef] [PubMed]
  10. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express 12(11), 2404–2422 (2004). [CrossRef] [PubMed]
  11. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, and B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11(22), 2953–2963 (2003). [CrossRef] [PubMed]
  12. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006). [CrossRef] [PubMed]
  13. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol. 112(12), 1584–1589 (1994). [PubMed]
  14. S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001). [PubMed]
  15. G. Baikoff, E. Lutun, C. Ferraz, and J. Wei, “Static and dynamic analysis of the anterior segment with optical coherence tomography,” J. Cataract Refract. Surg. 30(9), 1843–1850 (2004). [CrossRef] [PubMed]
  16. G. Baikoff, E. Lutun, J. Wei, and C. Ferraz, “Anterior chamber optical coherence tomography study of human natural accommodation in a 19-year-old albino,” J. Cataract Refract. Surg. 30(3), 696–701 (2004). [CrossRef] [PubMed]
  17. K. Richdale, M. A. Bullimore, and K. Zadnik, “Lens thickness with age and accommodation by optical coherence tomography,” Ophthalmic Physiol. Opt. 28(5), 441–447 (2008). [CrossRef] [PubMed]
  18. C. K. S. Leung, W. M. Chan, C. Y. Ko, S. I. Chui, J. Woo, M. K. Tsang, and R. K. K. Tse, “Visualization of anterior chamber angle dynamics using optical coherence tomography,” Ophthalmology 112(6), 980–984 (2005). [CrossRef] [PubMed]
  19. J. J. Kałuzny, M. Wojtkowski, and A. Kowalczyk, “Imaging of the anterior segment of the eye by spectral optical coherence tomography,” Opt. Appl. 32, 581–589 (2002).
  20. M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138, 412-. 419 (2004).
  21. B. J. Kałuzny, A. Szkulmowska, M. Szkulmowski, T. Bajraszewski, A. Wawrocka, M. R. Krawczynski, A. Kowalczyk, and M. Wojtkowski, “Granular corneal dystrophy in 830-nm spectral optical coherence tomography,” Cornea 27(7), 830–832 (2008). [CrossRef] [PubMed]
  22. B. J. Kaluzny, B. J. Kaluzy, J. J. Kałuzny, A. Szkulmowska, I. Gorczyńska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25(8), 960–965 (2006). [PubMed]
  23. B. J. Kałuzny, J. J. Kaluzny, A. Szkulmowska, I. Gorczyńska, M. Szkulmowski, T. Bajraszewski, P. Targowski, and A. Kowalczyk, “Spectral optical coherence tomography: a new imaging technique in contact lens practice,” Ophthalmic Physiol. Opt. 26(2), 127–132 (2006). [CrossRef] [PubMed]
  24. V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol. 125(8), 1027–1035 (2007). [CrossRef] [PubMed]
  25. B. J. Kaluzny, W. Fojt, A. Szkulmowska, T. Bajraszewski, M. Wojtkowski, and A. Kowalczyk, “Spectral optical coherence tomography in video-rate and 3D imaging of contact lens wear,” Optom. Vis. Sci. 84(12), E1104–E1109 (2007). [CrossRef] [PubMed]
  26. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009). [CrossRef] [PubMed]
  27. C. Zhou, J. Wang, and S. Jiao, “Dual channel dual focus optical coherence tomography for imaging accommodation of the eye,” Opt. Express 17(11), 8947–8955 (2009). [CrossRef] [PubMed]
  28. Y. Yasuno, V. D. Madjarova, S. Makita, M. Akiba, A. Morosawa, C. Chong, T. Sakai, K. P. Chan, M. Itoh, and T. Yatagai, “Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Opt. Express 13(26), 10652–10664 (2005). [CrossRef] [PubMed]
  29. C. Kerbage, H. Lim, W. Sun, M. Mujat, and J. F. de Boer, “Large depth-high resolution full 3D imaging of the anterior segments of the eye using high speed optical frequency domain imaging,” Opt. Express 15(12), 7117–7125 (2007). [CrossRef] [PubMed]
  30. M. V. Sarunic, S. Asrani, and J. A. Izatt, “Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography,” Arch. Ophthalmol. 126(4), 537–542 (2008). [CrossRef] [PubMed]
  31. M. Miura, H. Mori, Y. Watanabe, M. Usui, K. Kawana, T. Oshika, T. Yatagai, and Y. Yasuno, “Three-dimensional optical coherence tomography of granular corneal dystrophy,” Cornea 26(3), 373–374 (2007). [CrossRef] [PubMed]
  32. M. Miura, K. Kawana, T. Iwasaki, T. Kiuchi, T. Oshika, H. Mori, M. Yamanari, S. Makita, T. Yatagai, and Y. Yasuno, “Three-dimensional anterior segment optical coherence tomography of filtering blebs after trabeculectomy,” J. Glaucoma 17(3), 193–196 (2008). [CrossRef] [PubMed]
  33. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express 17(17), 14880–14894 (2009). [CrossRef] [PubMed]
  34. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010). [CrossRef] [PubMed]
  35. R. A. Schachar, “Is Helmholtz’s Theory of Accommodation Correct?” Ann. Ophthalmol. 31, 10–17 (1999).
  36. D. J. Coleman, “Unified model for accommodative mechanism,” Am. J. Ophthalmol. 69(6), 1063–1079 (1970). [PubMed]
  37. A. Glasser and P. L. Kaufman, “The mechanism of accommodation in primates,” Ophthalmology 106(5), 863–872 (1999). [CrossRef] [PubMed]
  38. J. F. Koretz, C. A. Cook, and P. L. Kaufman, “Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus,” Invest. Ophthalmol. Vis. Sci. 38(3), 569–578 (1997). [PubMed]
  39. D. A. Atchison, “Accommodation and presbyopia,” Ophthalmic Physiol. Opt. 15(4), 255–272 (1995). [CrossRef] [PubMed]
  40. W. N. Charman, “The eye in focus: accommodation and presbyopia,” Clin. Exp. Optom. 91(3), 207–225 (2008). [CrossRef] [PubMed]
  41. M. Kuznetsov, W. Atia, B. Jonson, and D. Flanders, “Compact Ultrafast Reflective Fabry-Perot Tunable Lasers For OCT Imaging Applications,” Proc. of SPIE 7554, 75541F1–75541F6 (2010).
  42. American National Standards Institute, Safe Use of Lasers (ANSI, 1993).
  43. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13(9), 3513–3528 (2005). [CrossRef] [PubMed]
  44. J. Schwiegerling, Field guide to visual and ophthalmic optics (SPIE, 2004).
  45. H. Furukawa, H. Hiro-Oka, T. Amano, D. Choi, T. Miyazawa, R. Yoshimura, K. Shimizu, and K. Ohbayashi, “Reconstruction of Three-Dimensional Structure of an Extracted Tooth by OFDR-OCT,” Proc. SPIE 6079, 60790T1–60790T7 (2006).
  46. V. Westphal, A. M. Rollins, S. Radhakrishnan, and J. A. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express 10(9), 397–404 (2002). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (3347 KB)     
» Media 2: AVI (3347 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited