OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 1 — Jan. 1, 2011
  • pp: 113–122

Remote focusing for programmable multi-layer differential multiphoton microscopy

Erich E. Hoover, Michael D. Young, Eric V. Chandler, Anding Luo, Jeffrey J. Field, Kraig E. Sheetz, Anne W. Sylvester, and Jeff A. Squier  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 1, pp. 113-122 (2011)
http://dx.doi.org/10.1364/BOE.2.000113


View Full Text Article

Enhanced HTML    Acrobat PDF (4670 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the application of remote focusing to multiphoton laser scanning microscopy and utilize this technology to demonstrate simultaneous, programmable multi-layer imaging. Remote focusing is used to independently control the axial location of multiple focal planes that can be simultaneously imaged with single element detection. This facilitates volumetric multiphoton imaging in scattering specimens and can be practically scaled to a large number of focal planes. Further, it is demonstrated that the remote focusing control can be synchronized with the lateral scan directions, enabling imaging in orthogonal scan planes.

© 2010 OSA

OCIS Codes
(030.5260) Coherence and statistical optics : Photon counting
(170.0180) Medical optics and biotechnology : Microscopy
(180.5810) Microscopy : Scanning microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Microscopy

History
Original Manuscript: November 8, 2010
Revised Manuscript: November 27, 2010
Manuscript Accepted: December 8, 2010
Published: December 15, 2010

Citation
Erich E. Hoover, Michael D. Young, Eric V. Chandler, Anding Luo, Jeffrey J. Field, Kraig E. Sheetz, Anne W. Sylvester, and Jeff A. Squier, "Remote focusing for programmable multi-layer differential multiphoton microscopy," Biomed. Opt. Express 2, 113-122 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-1-113


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Denk, D. W. Piston, and W. W. Webb, “Two-photon molecular excitation in laser-scanning microscopy,” in “Handbook of Biological Confocal Microscopy,”, 3rd ed., J. B. Pawley, ed. (Springer Science + Business Media, LLC, New York, 2006), chap. 28, pp. 535–549
  2. J. Bewersdorf, R. Pick, and S. W. Hell, “Multifocal multiphoton microscopy,” Opt. Lett. 23(9), 655–657 (1998). [CrossRef] [PubMed]
  3. M. Straub and S. W. Hell, “Multifocal multiphoton microscopy: A fast and efficient tool for 3-D fluorescence imaging,” Bioimaging 6(4), 177–185 (1998). [CrossRef]
  4. A. H. Buist, M. Müller, J. Squier, and G. J. Brakenhoff, “Real time two-photon absorption microscopy using multi point excitation,” J. Microsc. (Oxford) 192(2), 217–226 (1998). [CrossRef]
  5. A. Egner and S. W. Hell, “Time multiplexing and parallelization in multifocal multiphoton microscopy,” J. Opt. Soc. Am. A 17(7), 1192–1201 (2000). [CrossRef] [PubMed]
  6. V. Andresen, A. Egner, and S. W. Hell, “Time-multiplexed multifocal multiphoton microscope,” Opt. Lett. 26(2), 75–77 (2001). [CrossRef] [PubMed]
  7. K. Bahlmann, P. T. So, M. Kirber, R. Reich, B. Kosicki, W. McGonagle, and K. Bellve, “Multifocal multiphoton microscopy (MMM) at a frame rate beyond 600 Hz,” Opt. Express 15(17), 10991–10998 (2007). [CrossRef] [PubMed]
  8. K. H. Kim, C. Buehler, K. Bahlmann, T. Ragan, W.-C. A. Lee, E. Nedivi, E. L. Heffer, S. Fantini, and P. T. C. So, “Multifocal multiphoton microscopy based on multianode photomultiplier tubes,” Opt. Express 15(18), 11658–11678 (2007). [CrossRef] [PubMed]
  9. D. N. Fittinghoff and J. A. Squier, “Time-decorrelated multifocal array for multiphoton microscopy and micromachining,” Opt. Lett. 25(16), 1213–1215 (2000). [CrossRef] [PubMed]
  10. L. Sacconi, E. Froner, R. Antolini, M. R. Taghizadeh, A. Choudhury, and F. S. Pavone, “Multiphoton multifocal microscopy exploiting a diffractive optical element,” Opt. Lett. 28(20), 1918–1920 (2003). [CrossRef] [PubMed]
  11. D. N. Fittinghoff, C. B. Schaffer, E. Mazur, and J. A. Squier, “Time-decorrelated multifocal micromachining and trapping,” IEEE J. Quantum Electron. 7(4), 559–566 (2001). [CrossRef]
  12. T. Nielsen, M. Fricke, D. Hellweg, and P. Andresen, “High efficiency beam splitter for multifocal multiphoton microscopy,” J. Microsc. 201(3), 368–376 (2001). [CrossRef] [PubMed]
  13. M. Fricke and T. Nielsen, “Two-dimensional imaging without scanning by multifocal multiphoton microscopy,” Appl. Opt. 44(15), 2984–2988 (2005). [CrossRef] [PubMed]
  14. S. Kumar, C. Dunsby, P. A. De Beule, D. M. Owen, U. Anand, P. M. P. Lanigan, R. K. P. Benninger, D. M. Davis, M. A. A. Neil, P. Anand, C. Benham, A. Naylor, and P. M. W. French, “Multifocal multiphoton excitation and time correlated single photon counting detection for 3-D fluorescence lifetime imaging,” Opt. Express 15(20), 12548–12561 (2007). [CrossRef] [PubMed]
  15. N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008) (PMID: 18204458.). [CrossRef] [PubMed]
  16. K. E. Sheetz, E. E. Hoover, R. Carriles, D. Kleinfeld, and J. A. Squier, “Advancing multifocal nonlinear microscopy: development and application of a novel multibeam Yb:KGd(WO4)2 oscillator,” Opt. Express 16(22), 17574–17584 (2008). [CrossRef] [PubMed]
  17. W. Amir, R. Carriles, E. E. Hoover, T. A. Planchon, C. G. Durfee, and J. A. Squier, “Simultaneous imaging of multiple focal planes using a two-photon scanning microscope,” Opt. Lett. 32(12), 1731–1733 (2007). [CrossRef] [PubMed]
  18. R. Carriles, K. E. Sheetz, E. E. Hoover, J. A. Squier, and V. Barzda, “Simultaneous multifocal, multiphoton, photon counting microscopy,” Opt. Express 16(14), 10364–10371 (2008). [CrossRef] [PubMed]
  19. E. Chandler, E. Hoover, J. Field, K. Sheetz, W. Amir, R. Carriles, S. Y. Ding, and J. Squier, “High-resolution mosaic imaging with multifocal, multiphoton photon-counting microscopy,” Appl. Opt. 48(11), 2067–2077 (2009). [CrossRef] [PubMed]
  20. J. J. Field, R. Carriles, K. E. Sheetz, E. V. Chandler, E. E. Hoover, S. E. Tillo, T. E. Hughes, A. W. Sylvester, D. Kleinfeld, and J. A. Squier, “Optimizing the fluorescent yield in two-photon laser scanning microscopy with dispersion compensation,” Opt. Express 18(13), 13661–13672 (2010). [CrossRef] [PubMed]
  21. G. Labroille, R. S. Pillai, X. Solinas, C. Boudoux, N. Olivier, E. Beaurepaire, and M. Joffre, “Dispersion-based pulse shaping for multiplexed two-photon fluorescence microscopy,” Opt. Lett. 35(20), 3444–3446 (2010). [CrossRef] [PubMed]
  22. E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “Aberration-free optical refocusing in high numerical aperture microscopy,” Opt. Lett. 32(14), 2007–2009 (2007). [CrossRef] [PubMed]
  23. E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “An optical technique for remote focusing in microscopy,” Opt. Commun. 281(4), 880–887 (2008). [CrossRef]
  24. E. J. Botcherby, M. J. Booth, R. Juskaitis, and T. Wilson, “Real-time extended depth of field microscopy,” Opt. Express 16(26), 21843–21848 (2008). [CrossRef] [PubMed]
  25. E. J. Botcherby, M. J. Booth, R. Juškaitis, and T. Wilson, “Real-time slit scanning microscopy in the meridional plane,” Opt. Lett. 34(10), 1504–1506 (2009). [CrossRef] [PubMed]
  26. K. Carlsson and N. Åslund, “Confocal imaging for 3-D digital microscopy,” Appl. Opt. 26(16), 3232–3238 (1987). [CrossRef] [PubMed]
  27. P. G. Kazansky, W. Yang, E. Bricchi, J. Bovatsek, and A. Arai, ““quill” writing with ultrashort light pulses in transparent optical materials,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies (Optical Society of America, 2007), p. CThJ2.
  28. D. N. Vitek, D. E. Adams, A. Johnson, P. S. Tsai, S. Backus, C. G. Durfee, D. Kleinfeld, and J. A. Squier, “Temporally focused femtosecond laser pulses for low numerical aperture micromachining through optically transparent materials,” Opt. Express 18(17), 18086–18094 (2010). [CrossRef] [PubMed]
  29. D. N. Vitek, E. Block, Y. Bellouard, D. E. Adams, S. Backus, D. Kleinfeld, C. G. Durfee, and J. A. Squier, “Spatio-temporally focused femtosecond laser pulses for nonreciprocal writing into optically transparent materials,” Opt. Express 18(24), 24673–24678 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (1915 KB)     
» Media 2: AVI (2180 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited