OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 1 — Jan. 1, 2011
  • pp: 131–138

In-vivo two-photon imaging of the honey bee antennal lobe

Albrecht Haase, Elisa Rigosi, Federica Trona, Gianfranco Anfora, Giorgio Vallortigara, Renzo Antolini, and Claudio Vinegoni  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 1, pp. 131-138 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1050 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Due to the honey bee’s importance as a simple neural model, there is a great need for new functional imaging modalities. Herein we report on the development and new findings of a combined two-photon microscope with a synchronized odor stimulus platform for in-vivo functional and morphological imaging of the honey bee’s olfactory system focusing on its primary centers, the antennal lobes (ALs). Our imaging platform allows for simultaneously obtaining both morphological measurements of the AL’s functional units, the glomeruli, and in-vivo calcium recording of their neural activities. By applying external odor stimuli to the bee’s antennae, we were able to record the characteristic glomerular odor response maps. Compared to previous works where conventional fluorescence microscopy was used, our approach has been demonstrated to offer all the advantages of multi-photon imaging, providing substantial enhancement in both spatial and temporal resolutions while minimizing photo-damages. In addition, compared to previous full-field microscopy calcium recordings, a four-fold improvement in the functional signal has been achieved. Finally, the multi-photon associated extended penetration depth allows for functional imaging of profound glomeruli.

© 2010 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Functional Imaging

Original Manuscript: November 12, 2010
Revised Manuscript: December 3, 2010
Manuscript Accepted: December 3, 2010
Published: December 16, 2010

Albrecht Haase, Elisa Rigosi, Federica Trona, Gianfranco Anfora, Giorgio Vallortigara, Renzo Antolini, and Claudio Vinegoni, "In-vivo two-photon imaging of the honey bee antennal lobe," Biomed. Opt. Express 2, 131-138 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. L. Hodgkin and A. F. Huxley, “Action potentials recorded from inside a nerve fibre,” Nature 144(3651), 710–711 (1939). [CrossRef]
  2. B. M. Salzberg, H. V. Davila, and L. B. Cohen, “Optical recording of impulses in individual neurones of an invertebrate central nervous system,” Nature 246(5434), 508–509 (1973). [CrossRef] [PubMed]
  3. G. Grynkiewicz, M. Poenie, and R. Y. Tsien, “A new generation of Ca2+ indicators with greatly improved fluorescence properties,” J. Biol. Chem. 260(6), 3440–3450 (1985). [PubMed]
  4. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990). [CrossRef] [PubMed]
  5. K. Svoboda, W. Denk, D. Kleinfeld, and D. W. Tank, “In vivo dendritic calcium dynamics in neocortical pyramidal neurons,” Nature 385(6612), 161–165 (1997). [CrossRef] [PubMed]
  6. R. Menzel and M. Giurfa, “Cognitive architecture of a mini-brain: the honeybee,” Trends Cogn. Sci. (Regul. Ed.) 5(2), 62–71 (2001). [CrossRef] [PubMed]
  7. T. Franke, “In vivo 2-photon calcium imaging of olfactory interneurons in the honeybee antennal lobe,” Dissertation, FB Biologie, Chemie, Pharmazie, Freie Universit¨at Berlin (2009).
  8. E. E. Lieke, “Optical recording of neuronal activity in the insect central nervous system: odorant coding by the antennal lobes of honeybees,” Eur. J. Neurosci. 5(1), 49–55 (1993). [CrossRef] [PubMed]
  9. C. G. Galizia, S. Sachse, A. Rappert, and R. Menzel, “The glomerular code for odor representation is species specific in the honeybee Apis mellifera,” Nat. Neurosci. 2(5), 473–478 (1999). [CrossRef] [PubMed]
  10. A. Gelperin and J. Flores, “Vital staining from dye-coated microprobes identifies new olfactory interneurons for optical and electrical recording,” J. Neurosci. Methods 72(1), 97–108 (1997). [CrossRef] [PubMed]
  11. S. Sachse and C. G. Galizia, “Role of inhibition for temporal and spatial odor representation in olfactory output neurons: a calcium imaging study,” J. Neurophysiol. 87(2), 1106–1117 (2002). [PubMed]
  12. D. Flanagan and A. R. Mercer, “An atlas and 3-D reconstruction of the antennal lobes in the worker honey bee, Apis mellifera L. (Hymenoptera: Apidae),” Int. J. Insect Morphol. Embryol. 18(2-3), 145–159 (1989). [CrossRef]
  13. R. Brandt, T. Rohlfing, J. Rybak, S. Krofczik, A. Maye, M. Westerhoff, H.-C. Hege, and R. Menzel, “Three-dimensional average-shape atlas of the honeybee brain and its applications,” J. Comp. Neurol. 492(1), 1–19 (2005). [CrossRef] [PubMed]
  14. B. Hourcade, E. Perisse, J. M. Devaud, and J. C. Sandoz, “Long-term memory shapes the primary olfactory center of an insect brain,” Learn. Mem. 16(10), 607–615 (2009). [CrossRef] [PubMed]
  15. C. G. Galizia and R. Menzel, “The role of glomeruli in the neural representation of odours: results from optical recording studies,” J. Insect Physiol. 47(2), 115–130 (2001). [CrossRef] [PubMed]
  16. L. Moreaux and G. Laurent, “Estimating firing rates from calcium signals in locust projection neurons in vivo,” Front Neural Circuits 1, 2 (2007). [CrossRef] [PubMed]
  17. D. Müller, R. Abel, R. Brandt, M. Zöckler, and R. Menzel, “Differential parallel processing of olfactory information in the honeybee, Apis mellifera L,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 188(5), 359–370 (2002). [CrossRef] [PubMed]
  18. N. Yamagata, M. Schmuker, P. Szyszka, M. Mizunami, and R. Menzel, “Differential odor processing in two olfactory pathways in the honeybee,” Front Syst Neurosci 3, 16 (2009). [CrossRef] [PubMed]
  19. C. G. Galizia, and R. Vetter, “Optical methods for analyzing odor-evoked activity in the insect brain,” in Advances in Insect Sensory Neuroscience, T. A. Christensen, ed. (CRC press, 2004), pp. 349–392.
  20. C. G. Galizia, S. L. McIlwrath, and R. Menzel, “A digital three-dimensional atlas of the honeybee antennal lobe based on optical sections acquired by confocal microscopy,” Cell Tissue Res. 295(3), 383–394 (1999), http://neuro.uni-konstanz.de/23bee morph/default.html . [CrossRef] [PubMed]
  21. P. Peele, M. Ditzen, R. Menzel, and C. G. Galizia, “Appetitive odor learning does not change olfactory coding in a subpopulation of honeybee antennal lobe neurons,” J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 192(10), 1083–1103 (2006). [CrossRef] [PubMed]
  22. G. Laurent, M. Wehr, K. MacLeod, M. Stopfer, B. Leitch, and H. Davidowitz, “Dynamic encoding of odors with oscillating neuronal assemblies in the locust brain,” Biol. Bull. 191(1), 70–75 (1996). [CrossRef]
  23. S. Kirschner, C. J. Kleineidam, C. Zube, J. Rybak, B. Grünewald, and W. Rössler, “Dual olfactory pathway in the honeybee, Apis mellifera,” J. Comp. Neurol. 499(6), 933–952 (2006). [CrossRef] [PubMed]
  24. T. Faber and R. Menzel, “Visualizing mushroom body response to a conditioned odor in honeybees,” Naturwissenschaften 88(11), 472–476 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited