OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 1 — Jan. 1, 2011
  • pp: 159–168

Optical vortices generated by a PANDA ring resonator for drug trapping and delivery applications

Nathaporn Suwanpayak, Muhammad Arif Jalil, Chat Teeka, Jalil Ali, and Preecha P. Yupapin  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 1, pp. 159-168 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1085 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a novel drug delivery system (DDS) by using a PANDA ring resonator to form, transmit and receive the microscopic volume by controlling some suitable ring parameters. The optical vortices (gradient optical field/well) can be generated and used to form the trapping tool in the same way as the optical tweezers. The microscopic volume (drug) can be trapped and moved (transported) dynamically within the wavelength router or network. In principle, the trapping force is formed by the combination between the gradient field and scattering photons, which has been reviewed. The advantage of the proposed system is that a transmitter and receiver can be formed within the same system, which is called transceiver, in which the use of such a system for microscopic volume (drug volume) trapping and transportation (delivery) can be realized.

© 2010 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(140.7010) Lasers and laser optics : Laser trapping
(190.4360) Nonlinear optics : Nonlinear optics, devices
(350.4855) Other areas of optics : Optical tweezers or optical manipulation
(080.4865) Geometric optics : Optical vortices

ToC Category:
Optical Traps, Manipulation, and Tracking

Original Manuscript: August 30, 2010
Revised Manuscript: December 11, 2010
Manuscript Accepted: December 15, 2010
Published: December 17, 2010

Nathaporn Suwanpayak, Muhammad Arif Jalil, Chat Teeka, Jalil Ali, and Preecha P. Yupapin, "Optical vortices generated by a PANDA ring resonator for drug trapping and delivery applications," Biomed. Opt. Express 2, 159-168 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Rohrbach and E. H. Stelzer, “Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations,” Appl. Opt. 41(13), 2494–2507 (2002). [CrossRef] [PubMed]
  2. K. Uomwech, K. Sarapat, and P. P. Yupapin, “Dynamic modulated gaussian pulse propatation within the double panda ring resonator system,” Microw. Opt. Technol. Lett. 52(8), 1818–1821 (2010). [CrossRef]
  3. B. Piyatamrong, K. Kulsirirat, W. Techitdheera, S. Mitatha, and P. P. Yupapin, “Dynamic potential well generation and control using double resonators incorporating in an add/drop filter,” Mod. Phys. Lett. B 24(32), 3071–3082 (2010). [CrossRef]
  4. H. Cai and A. W. Poon, “Optical manipulation and transport of microparticles on silicon nitride microring-resonator-based add-drop devices,” Opt. Lett. 35(17), 2855–2857 (2010). [CrossRef] [PubMed]
  5. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986). [CrossRef] [PubMed]
  6. K. Egashira, A. Terasaki, and T. Kondow, “Photon-trap spectroscopy applied to molecules adsorbed on a solid surface: probing with a standing wave versus a propagating wave,” Appl. Opt. 49(7), 1151–1157 (2010). [CrossRef] [PubMed]
  7. A. V. Kachynski, A. N. Kuzmin, H. E. Pudavar, D. S. Kaputa, A. N. Cartwright, and P. N. Prasad, “Measurement of optical trapping forces by use of the two-photon-excited fluorescence of microspheres,” Opt. Lett. 28(23), 2288–2290 (2003). [CrossRef] [PubMed]
  8. M. Schulz, H. Crepaz, F. Schmidt-Kaler, J. Eschner, and R. Blatt, “Transfer of trapped atoms between two optical tweezer potentials,” J. Mod. Opt. 54(11), 1619–1626 (2007). [CrossRef]
  9. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997). [CrossRef] [PubMed]
  10. L. J. Anderson, E. Hansen, E. Y. Lukianova-Hleb, J. H. Hafner, and D. O. Lapotko, “Optically guided controlled release from liposomes with tunable plasmonic nanobubbles,” J. Control. Release 144(2), 151–158 (2010). [CrossRef] [PubMed]
  11. H. Shangguan, L. W. Casperson, A. Shearin, K. W. Gregory, and S. A. Prahl, “Drug delivery with microsecond laser pulses into gelatin,” Appl. Opt. 35(19), 3347–3357 (1996). [CrossRef] [PubMed]
  12. M. Biondi, F. Ungaro, F. Quaglia, and P. A. Netti, “Controlled drug delivery in tissue engineering,” Adv. Drug Deliv. Rev. 60(2), 229–242 (2008). [CrossRef] [PubMed]
  13. M. N. Ravi Kumar, “Nano and microparticles as controlled drug delivery devices,” J. Pharm. Pharm. Sci. 3(2), 234–258 (2000). [PubMed]
  14. M.Z hang, T. Tarn, Ning Xi “Micro-/nano-devices for controlled drug delivery,” in Proceeding of the International Conference on Robotics 6 Automation, New Orleans. LA., (2004), pp. 2068–2063.
  15. G. Huang, J. Gao, Z. Hu, J. V. St John, B. C. Ponder, and D. Moro, “Controlled drug release from hydrogel nanoparticle networks,” J. Control. Release 94(2-3), 303–311 (2004). [CrossRef] [PubMed]
  16. J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of dielectric nanoparticles in resonant cavities,” Phys. Rev. A 82(5), 053819 (2010). [CrossRef]
  17. U. Troppenz, M. Hamacher, D. G. Rabus, and H. Heidrich, “All-active InGaAsP/InP ring cavities for widespread functionalities in the wavelength domain,” Proc. 14th Internat. Conf. Indium Phosphide and Related Materials (IPRM’02), Stockholm, Sweden, 475–478 (2002)
  18. S. Mikroulis, E. Roditi, and D. Syvridis, “Direct modulation properties of 1.55µm InGaAsP/InP Microring Lasers,” J. Lightwave Technol. 26(2), 251–256 (2008). [CrossRef]
  19. D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, “Dynamic control of liquid-core/liquid-cladding optical waveguides,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12434–12438 (2004). [CrossRef] [PubMed]
  20. T. Phatharaworamet, C. Teeka, R. Jomtarak, S. Mitatha, and P. P. Yupapin, “Random binary code generation using dark-bright soliton conversion control within a PANDA ring resonator,” J. Lightwave Technol. 28(19), 2804–2809 (2010). [CrossRef]
  21. K. Svoboda and S. M. Block, “Biological applications of optical forces,” Annu. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994). [CrossRef] [PubMed]
  22. K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007). [CrossRef] [PubMed]
  23. M. Tasakorn, C. Teeka, R. Jomtarak, and P. P. Yupapin, “Multitweezers generation control within a nanoring resonator system,” Opt. Eng. 49(7), 075002 (2010). [CrossRef]
  24. S. Mitatha, N. Pornsuwancharoen, and P. P. Yupapin, “A simultaneous short wave and millimeter wave generation using a soliton pulse within a nano-waveguide,” IEEE Photon. Technol. Lett. 21(13), 932–934 (2009). [CrossRef]
  25. Y. Kokubun, Y. Hatakeyama, M. Ogata, S. Suzuki, and N. Zaizen, “Fabrication technologies for vertically coupled microring resonator with multilevel crossing busline and ultracompact-ring radius,” IEEE J. Sel. Top. Quantum Electron. 11(1), 4–10 (2005). [CrossRef]
  26. P. P. Yupapin and W. Suwancharoen, “Chaotic signal generation and cancellation using a micro ring resonator incorporating an optical add/drop multiplexer,” Opt. Commun. 280(2), 343–350 (2007). [CrossRef]
  27. P. P. Yupapin, P. Saeung, and C. Li, “Characteristics of complementary ring-resonator add/drop filters modeling by using graphical approach,” Opt. Commun. 272(1), 81–86 (2007). [CrossRef]
  28. J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4(1), 46–49 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited