OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 1 — Jan. 1, 2011
  • pp: 194–206

Fluorescence time-resolved imaging system embedded in an ultrasound prostate probe

Aurélie Laidevant, Lionel Hervé, Mathieu Debourdeau, Jérôme Boutet, Nicolas Grenier, and Jean-Marc Dinten  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 1, pp. 194-206 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1031 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ultrasound imaging (US) of the prostate has a low specificity to distinguish tumors from the surrounding tissues. This limitation leads to systematic biopsies. Fluorescent diffuse optical imaging may represent an innovative approach to guide biopsies to tumors marked with high specificity contrast agents and therefore enable an early detection of prostate cancer. This article describes a time-resolved optical system embedded in a transrectal US probe, as well as the fluorescence reconstruction method and its performance. Optical measurements were performed using a pulsed laser, optical fibers and a time-resolved detection system. A novel fast reconstruction method was derived and used to locate a 45 µL ICG fluorescent inclusion at a concentration of 10 µM, in a liquid prostate phantom. Very high location accuracy (0.15 cm) was achieved after reconstruction, for different positions of the inclusion, in the three directions of space. The repeatability, tested with ten sequential measurements, was of the same order of magnitude. Influence of the input parameters (optical properties and lifetime) is presented. These results confirm the feasibility of using optical imaging for prostate guided biopsies.

© 2010 OSA

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.5280) Medical optics and biotechnology : Photon migration
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(170.7050) Medical optics and biotechnology : Turbid media
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:
Spectroscopic Diagnostics

Original Manuscript: September 28, 2010
Revised Manuscript: December 10, 2010
Manuscript Accepted: December 20, 2010
Published: December 22, 2010

Aurélie Laidevant, Lionel Hervé, Mathieu Debourdeau, Jérôme Boutet, Nicolas Grenier, and Jean-Marc Dinten, "Fluorescence time-resolved imaging system embedded in an ultrasound prostate probe," Biomed. Opt. Express 2, 194-206 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42(5), 825–840 (1997). [CrossRef] [PubMed]
  2. P. T. Scardino, R. Weaver, and M. A. Hudson, “Early detection of prostate cancer,” Hum. Pathol. 23(3), 211–222 (1992). [CrossRef] [PubMed]
  3. G. D. Grossfeld and P. R. Carroll, “Prostate cancer early detection: a clinical perspective,” Epidemiol. Rev. 23(1), 173–180 (2001). [PubMed]
  4. V. Scattoni, A. Zlotta, R. Montironi, C. Schulman, P. Rigatti, and F. Montorsi, “Extended and saturation prostatic biopsy in the diagnosis and characterisation of prostate cancer: a critical analysis of the literature,” Eur. Urol. 52(5), 1309–1322 (2007). [CrossRef] [PubMed]
  5. B. Djavan, P. Mazal, A. Zlotta, R. Wammack, V. Ravery, M. Remzi, M. Susani, A. Borkowski, S. Hruby, L. Boccon-Gibod, C. C. Schulman, and M. Marberger, “Pathological features of prostate cancer detected on initial and repeat prostate biopsy: results of the prospective European Prostate Cancer Detection study,” Prostate 47(2), 111–117 (2001). [CrossRef] [PubMed]
  6. L. V. Rodríguez and M. K. Terris, “Risks and complications of transrectal ultrasound guided prostate needle biopsy: a prospective study and review of the literature,” J. Urol. 160(6 Pt 1), 2115–2120 (1998). [PubMed]
  7. F. Rabbani, N. Stroumbakis, B. R. Kava, M. S. Cookson, and W. R. Fair, “Incidence and clinical significance of false-negative sextant prostate biopsies,” J. Urol. 159(4), 1247–1250 (1998). [CrossRef] [PubMed]
  8. M. K. Terris, “Sensitivity and specificity of sextant biopsies in the detection of prostate cancer: preliminary report,” Urology 54(3), 486–489 (1999). [CrossRef] [PubMed]
  9. Z. Jiang, D. Piao, G. Xu, J. W. Ritchey, G. R. Holyoak, K. E. Bartels, C. F. Bunting, G. Slobodov, and J. S. Krasinski, “Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate, part II: experimental demonstration,” Opt. Express 16(22), 17505–17520 (2008). [CrossRef] [PubMed]
  10. Z. Jiang, G. R. Holyoak, K. E. Bartels, J. W. Ritchey, G. Xu, C. F. Bunting, G. Slobodov, and D. Piao, “In vivo trans-rectal ultrasound-coupled optical tomography of a transmissible venereal tumor model in the canine pelvic canal,” J. Biomed. Opt. 14(3), 030506 (2009). [CrossRef] [PubMed]
  11. J. Steinbrink, A. Liebert, H. Wabnitz, R. Macdonald, H. Obrig, A. Wunder, R. Bourayou, T. Betz, J. Klohs, U. Lindauer, U. Dirnagl, and A. Villringer, “Towards noninvasive molecular fluorescence imaging of the human brain,” Neurodegener. Dis. 5(5), 296–303 (2008). [CrossRef] [PubMed]
  12. M. Kacprzak, A. Liebert, P. Sawosz, N. Zolek, D. Milej, and R. Maniewski, “Time-resolved imaging of fluorescent inclusions in optically turbid medium - phantom study,” Opto-Electron. Rev. 18(1), 37–47 (2010). [CrossRef]
  13. F. Gao, J. Li, L. Zhang, P. Poulet, H. Zhao, and Y. Yamada, “Simultaneous fluorescence yield and lifetime tomography from time-resolved transmittances of small-animal-sized phantom,” Appl. Opt. 49(16), 3163–3172 (2010). [CrossRef] [PubMed]
  14. T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007). [CrossRef] [PubMed]
  15. J. Boutet, L. Herve, M. Debourdeau, L. Guyon, P. Peltie, J. M. Dinten, L. Saroul, F. Duboeuf, and D. Vray, “Bimodal ultrasound and fluorescence approach for prostate cancer diagnosis,” J. Biomed. Opt. 14(6), 064001 (2009). [CrossRef] [PubMed]
  16. J. Boutet, M. Debourdeau, A. Laidevant, L. Herve, and J. Dinten, “Comparison between two time-resolved approaches for prostate cancer diagnosis: high rate imager vs. photon counting system,” Proc. SPIE 7548, 75481A, 75481A-8 (2010). [CrossRef]
  17. A. Laidevant, A. da Silva, M. Berger, and J. M. Dinten, “Effects of the surface boundary on the determination of the optical properties of a turbid medium with time-resolved reflectance,” Appl. Opt. 45(19), 4756–4764 (2006). [CrossRef] [PubMed]
  18. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23(9), 1625–1633 (1996). [CrossRef] [PubMed]
  19. F. P. Navarro, M. Berger, M. Goutayer, S. Guillermet, V. Josserand, P. Rizo, F. Vinet, and I. Texier, ““A novel indocyanine green nanoparticle probe for non invasive fluorescence imaging in vivo,” dans,” Proc. SPIE 7190, 71900L, 71900L–10 (2009). [CrossRef]
  20. M. S. Patterson, B. Chance, and B. C. Wilson, “Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties,” Appl. Opt. 28(12), 2331–2336 (1989). [CrossRef] [PubMed]
  21. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol. 37(7), 1531–1560 (1992). [CrossRef] [PubMed]
  22. A. Laidevant, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, and A. C. Boccara, “Analytical method for localizing a fluorescent inclusion in a turbid medium,” Appl. Opt. 46(11), 2131–2137 (2007). [CrossRef] [PubMed]
  23. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, 2006).
  24. M. Y. Berezin, H. Lee, W. Akers, and S. Achilefu, “Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems,” Biophys. J. 93(8), 2892–2899 (2007). [CrossRef] [PubMed]
  25. A. Laidevant, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, and A. C. Boccara, “Analytical method for localizing a fluorescent inclusion in a turbid medium,” Appl. Opt. 46(11), 2131–2137 (2007). [CrossRef] [PubMed]
  26. R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt. 14(2), 024004 (2009). [CrossRef] [PubMed]
  27. S. H. Han, S. Farshchi-Heydari, and D. J. Hall, “Analytical method for the fast time-domain reconstruction of fluorescent inclusions in vitro and in vivo,” Biophys. J. 98(2), 350–357 (2010). [CrossRef] [PubMed]
  28. B. Djavan, M. Susani, B. Bursa, A. Basharkhah, R. Simak, and M. Marberger, “Predictability and significance of multifocal prostate cancer in the radical prostatectomy specimen,” Tech. Urol. 5(3), 139–142 (1999). [CrossRef] [PubMed]
  29. L. Cheng, T. D. Jones, C. X. Pan, A. Barbarin, J. N. Eble, and M. O. Koch, “Anatomic distribution and pathologic characterization of small-volume prostate cancer (<0.5 ml) in whole-mount prostatectomy specimens,” Mod. Pathol. 18(8), 1022–1026 (2005). [CrossRef] [PubMed]
  30. A. M. Wise, T. A. Stamey, J. E. McNeal, and J. L. Clayton, “Morphologic and clinical significance of multifocal prostate cancers in radical prostatectomy specimens,” Urology 60(2), 264–269 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited