OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 1 — Jan. 1, 2011
  • pp: 26–36

The structural origin of second harmonic generation in fascia

Maxime Rivard, Mathieu Laliberté, Antony Bertrand-Grenier, Catalin Harnagea, Christian P. Pfeffer, Martin Vallières, Yves St-Pierre, Alain Pignolet, My Ali El Khakani, and François Légaré  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 1, pp. 26-36 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1213 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fascia tissue is rich in collagen type I proteins and can be imaged by second harmonic generation (SHG) microscopy. While identifying the overall alignment of the collagen fibrils is evident from those images, the tridimensional structural origin for the observation of SHG signal is more complex than it apparently seems. Those images reveal that the noncentrosymmetric (piezoelectric) structures are distributed heterogeneously on spatial dimensions inferior to the resolution provided by the nonlinear optical microscope (sub-micron). Using piezoresponse force microscopy (PFM), we show that an individual collagen fibril has a noncentrosymmetric structural organization. Fibrils are found to be arranged in nano-domains where the anisotropic axis is preserved along the fibrillar axis, while across the collagen sheets, the phase of the second order nonlinear susceptibility is changing by 180 degrees between adjacent nano-domains. This complex architecture of noncentrosymmetric nano-domains governs the coherent addition of 2ω light within the focal volume and the observed features in the SHG images taken in fascia.

© 2010 OSA

OCIS Codes
(190.4160) Nonlinear optics : Multiharmonic generation
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: October 11, 2010
Revised Manuscript: November 16, 2010
Manuscript Accepted: November 29, 2010
Published: December 1, 2010

Maxime Rivard, Mathieu Laliberté, Antony Bertrand-Grenier, Catalin Harnagea, Christian P. Pfeffer, Martin Vallières, Yves St-Pierre, Alain Pignolet, My Ali El Khakani, and François Légaré, "The structural origin of second harmonic generation in fascia," Biomed. Opt. Express 2, 26-36 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002). [CrossRef] [PubMed]
  2. E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003). [CrossRef] [PubMed]
  3. P. Stoller, P. M. Celliers, K. M. Reiser, and A. M. Rubenchik, “Quantitative second-harmonic generation microscopy in collagen,” Appl. Opt. 42(25), 5209–5219 (2003). [CrossRef] [PubMed]
  4. R. M. Williams, W. R. Zipfel, and W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005). [CrossRef] [PubMed]
  5. A. T. Yeh, M. J. Hammer-Wilson, D. C. Van Sickle, H. P. Benton, A. Zoumi, B. J. Tromberg, and G. M. Peavy, “Nonlinear optical microscopy of articular cartilage,” Osteoarthritis Cartilage 13(4), 345–352 (2005). [CrossRef] [PubMed]
  6. J. C. Mansfield, C. P. Winlove, J. Moger, and S. J. Matcher, “Collagen fiber arrangement in normal and diseased cartilage studied by polarization sensitive nonlinear microscopy,” J. Biomed. Opt. 13(4), 044020 (2008). [CrossRef] [PubMed]
  7. S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006). [CrossRef] [PubMed]
  8. S.-W. Chu, S.-Y. Chen, G.-W. Chern, T. H. Tsai, Y. C. Chen, B.-L. Lin, and C.-K. Sun, “Studies of χ(2)/χ(3) tensors in submicron-scaled bio-tissues by polarization harmonics optical microscopy,” Biophys. J. 86(6), 3914–3922 (2004). [CrossRef] [PubMed]
  9. T. Boulesteix, E. Beaurepaire, M.-P. Sauviat, and M.-C. Schanne-Klein, “Second-harmonic microscopy of unstained living cardiac myocytes: measurements of sarcomere length with 20-nm accuracy,” Opt. Lett. 29(17), 2031–2033 (2004). [CrossRef] [PubMed]
  10. W. H. Stoothoff, B. J. Bacskai, and B. T. Hyman, “Monitoring tau-tubulin interactions utilizing second harmonic generation in living neurons,” J. Biomed. Opt. 13(6), 064039 (2008). [CrossRef] [PubMed]
  11. A. Zoumi, A. Yeh, and B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 11014–11019 (2002). [CrossRef] [PubMed]
  12. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7075–7080 (2003). [CrossRef] [PubMed]
  13. D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol. 147(1), 3–11 (2004). [CrossRef] [PubMed]
  14. D. Débarre, W. Supatto, A. M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M. C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods 3(1), 47–53 (2006). [CrossRef] [PubMed]
  15. H. Wang, Y. Fu, P. Zickmund, R. Shi, and J. X. Cheng, “Coherent anti-stokes Raman scattering imaging of axonal myelin in live spinal tissues,” Biophys. J. 89(1), 581–591 (2005). [CrossRef] [PubMed]
  16. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005). [CrossRef] [PubMed]
  17. A. F. Pegoraro, A. D. Slepkov, A. Ridsdale, J. P. Pezacki, and A. Stolow, “Single laser source for multimodal coherent anti-Stokes Raman scattering microscopy,” Appl. Opt. 49(25), F10–F17 (2010). [CrossRef] [PubMed]
  18. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy,” Science 322(5909), 1857–1861 (2008). [CrossRef] [PubMed]
  19. P. Nandakumar, A. Kovalev, and A. Volkmer, “Vibrational imaging based on stimulated Raman scattering microscopy,” N. J. Phys. 11(3), 033026 (2009). [CrossRef]
  20. A. Volkmer, J.-X. Cheng, and X. Sunney Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001). [CrossRef]
  21. T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, “Second harmonic generation confocal microscopy of collagen type I from rat tendon cryosections,” Biophys. J. 91(12), 4665–4677 (2006). [CrossRef] [PubMed]
  22. O. Nadiarnykh, R. B. Lacomb, P. J. Campagnola, and W. A. Mohler, “Coherent and incoherent SHG in fibrillar cellulose matrices,” Opt. Express 15(6), 3348–3360 (2007). [CrossRef] [PubMed]
  23. F. Légaré, C. P. Pfeffer, and B. R. Olsen, “The role of backscattering in SHG tissue imaging,” Biophys. J. 93(4), 1312–1320 (2007). [CrossRef] [PubMed]
  24. P. Bianchini and A. Diaspro, “Three-dimensional (3D) backward and forward second harmonic generation (SHG) microscopy of biological tissues,” J Biophotonics 1(6), 443–450 (2008). [CrossRef] [PubMed]
  25. R. Lacomb, O. Nadiarnykh, S. S. Townsend, and P. J. Campagnola, “Phase matching considerations in second harmonic generation from tissues: effects on emission directionality, conversion efficiency and observed morphology,” Opt. Commun. 281(7), 1823–1832 (2008). [CrossRef] [PubMed]
  26. S.-W. Chu, S.-P. Tai, T.-M. Liu, C.-K. Sun, and C. H. Lin, “Selective imaging in second-harmonic-generation microscopy with anisotropic radiation,” J. Biomed. Opt. 14(1), 010504 (2009). [CrossRef] [PubMed]
  27. R. A. Rao, M. R. Mehta, S. Leithem, and K. C. Toussaint., “Quantitative analysis of forward and backward second-harmonic images of collagen fibers using Fourier transform second-harmonic-generation microscopy,” Opt. Lett. 34(24), 3779–3781 (2009). [CrossRef] [PubMed]
  28. J. Mertz and L. Moreaux, “Second-harmonic generation by focused excitation of inhomogeneously distributed scatterers,” Opt. Commun. 196(1-6), 325–330 (2001). [CrossRef]
  29. K. Kühn, “The structure of collagen,” Essays Biochem. 5, 59–87 (1969). [PubMed]
  30. K. E. Kadler, A. Hill, and E. G. Canty-Laird, “Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators,” Curr. Opin. Cell Biol. 20(5), 495–501 (2008). [CrossRef] [PubMed]
  31. K. E. Kadler, D. F. Holmes, J. A. Trotter, and J. A. Chapman, “Collagen fibril formation,” Biochem. J. 316(Pt 1), 1–11 (1996). [PubMed]
  32. D. R. Baselt, J. P. Revel, and J. D. Baldeschwieler, “Subfibrillar structure of type I collagen observed by atomic force microscopy,” Biophys. J. 65(6), 2644–2655 (1993). [CrossRef] [PubMed]
  33. M. F. Paige, J. K. Rainey, and M. C. Goh, “Fibrous long spacing collagen ultrastructure elucidated by atomic force microscopy,” Biophys. J. 74(6), 3211–3216 (1998). [CrossRef] [PubMed]
  34. D. F. Holmes, M. P. Lowe, and J. A. Chapman, “Vertebrate (chick) collagen fibrils formed in vivo can exhibit a reversal in molecular polarity,” J. Mol. Biol. 235(1), 80–83 (1994). [CrossRef] [PubMed]
  35. J. Hulliger, “Connective tissue polarity unraveled by a Markov-chain mechanism of collagen fibril segment self-assembly,” Biophys. J. 84(6), 3501–3507 (2003). [CrossRef] [PubMed]
  36. I. Rocha-Mendoza, D. R. Yankelevich, M. Wang, K. M. Reiser, C. W. Frank, and A. Knoesen, “Sum frequency vibrational spectroscopy: the molecular origins of the optical second-order nonlinearity of collagen,” Biophys. J. 93(12), 4433–4444 (2007). [CrossRef] [PubMed]
  37. M. Strupler, and M.-C. Schanne-Klein, “Simulating second harmonic generation from tendon - Do we see fibrils?” in Biomedical Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper BTuD83.
  38. D. A. D. Parry and A. S. Craig, “Quantitative electron microscope observations of the collagen fibrils in rat-tail tendon,” Biopolymers 16(5), 1015–1031 (1977). [CrossRef] [PubMed]
  39. C. Harnagea, A. Pignolet, M. Alexe, and D. Hesse, “Higher-order electromechanical response of thin films by contact resonance piezoresponse force microscopy,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(12), 2309–2322 (2006). [CrossRef] [PubMed]
  40. B. P. Chan, C. Amann, A. N. Yaroslavsky, C. Title, D. Smink, B. Zarins, I. E. Kochevar, and R. W. Redmond, “Photochemical repair of Achilles tendon rupture in a rat model,” J. Surg. Res. 124(2), 274–279 (2005). [CrossRef] [PubMed]
  41. C. Harnagea, M. Vallières, C. P. Pfeffer, D. Wu, B. R. Olsen, A. Pignolet, F. Légaré, and A. Gruverman, “Two-dimensional nanoscale structural and functional imaging in individual collagen type I fibrils,” Biophys. J. 98(12), 3070–3077 (2010). [CrossRef] [PubMed]
  42. M. Minary-Jolandan and M.-F. Yu, “Uncovering Nanoscale Electromechanical Heterogeneity in the Subfibrillar Structure of Collagen Fibrils Responsible for the Piezoelectricity of Bone,” ACS Nano 3(7), 1859–1863 (2009). [CrossRef] [PubMed]
  43. A. Kholkin, N. Amdursky, I. Bdikin, E. Gazit, and G. Rosenman, “Strong piezoelectricity in bioinspired peptide nanotubes,” ACS Nano 4(2), 610–614 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited