OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 1 — Jan. 1, 2011
  • pp: 44–57

A study on tetrahedron-based inhomogeneous Monte Carlo optical simulation

Haiou Shen and Ge Wang  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 1, pp. 44-57 (2011)
http://dx.doi.org/10.1364/BOE.2.000044


View Full Text Article

Enhanced HTML    Acrobat PDF (1060 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Monte Carlo (MC) simulation is widely recognized as a gold standard in biophotonics for its high accuracy. Here we analyze several issues associated with tetrahedron-based optical Monte Carlo simulation in the context of TIM-OS, MMCM, MCML, and CUDAMCML in terms of accuracy and efficiency. Our results show that TIM-OS has significant better performance in the complex geometry cases and has comparable performance with CUDAMCML in the multi-layered tissue model.

© 2010 OSA

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.6920) Medical optics and biotechnology : Time-resolved imaging

ToC Category:
Optics of Tissue and Turbid Media

History
Original Manuscript: November 5, 2010
Revised Manuscript: November 29, 2010
Manuscript Accepted: November 29, 2010
Published: December 3, 2010

Citation
Haiou Shen and Ge Wang, "A study on tetrahedron-based inhomogeneous Monte Carlo optical simulation," Biomed. Opt. Express 2, 44-57 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-1-44


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995). [CrossRef] [PubMed]
  2. A. Appel, “Some techniques for shading machine renderings of solids,” AFIPS Joint Computer Conferences. Atlantic City, New Jersey (1968).
  3. J. D. Foley, Computer Graphics: Principles and Practice, 2nd ed (Addison-Wesley, Reading, Mass., 1995).
  4. E. Margallo-Balbás and P. J. French, “Shape based Monte Carlo code for light transport in complex heterogeneous tissues,” Opt. Express 15(21), 14086–14098 (2007). [CrossRef] [PubMed]
  5. B. W. Rice, M. D. Cable, and M. B. Nelson, “In vivo imaging of light-emitting probes,” J. Biomed. Opt. 6(4), 432–440 (2001). [CrossRef] [PubMed]
  6. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical-properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990). [CrossRef]
  7. H. Shen and G. Wang, “A tetrahedron-based inhomogeneous Monte Carlo optical simulator,” Phys. Med. Biol. 55(4), 947–962 (2010). [CrossRef] [PubMed]
  8. H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, “A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method,” Acad. Radiol. 11(9), 1029–1038 (2004). [CrossRef] [PubMed]
  9. W. Vogt, H. Shen, G. Wang, and C. G. Rylander, “Parametric study of tissue optical clearing by localized mechanical compression using combined finite element and Monte Carlo simulation,” J. Innovative Opt. Health Sci. (JIOHS) 3(3), 203–211 (2010). [CrossRef]
  10. Y. Lu, B. Zhu, H. Shen, J. C. Rasmussen, G. Wang, and E. M. Sevick-Muraca, “A parallel adaptive finite element simplified spherical harmonics approximation solver for frequency domain fluorescence molecular imaging,” Phys. Med. Biol. 55(16), 4625–4645 (2010). [CrossRef] [PubMed]
  11. C. G. Rylander, D. P. Davé, T. Akkin, T. E. Milner, K. R. Diller, and A. J. Welch, “Quantitative phase-contrast imaging of cells with phase-sensitive optical coherence microscopy,” Opt. Lett. 29(13), 1509–1511 (2004). [CrossRef] [PubMed]
  12. G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44(9), 2307–2320 (1999). [CrossRef] [PubMed]
  13. M. N. Rylander, Y. Feng, J. Bass, and K. R. Diller, “Heat shock protein expression and injury optimization for laser therapy design,” Lasers Surg. Med. 39(9), 731–746 (2007). [CrossRef] [PubMed]
  14. T. J. Pfefer, J. K. Barton, D. J. Smithies, T. E. Milner, J. S. Nelson, M. J. van Gemert, and A. J. Welch, “Modeling laser treatment of port wine stains with a computer-reconstructed biopsy,” Lasers Surg. Med. 24(2), 151–166 (1999). [CrossRef] [PubMed]
  15. G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffman, G. McLennan, and M. Henry, “In vivo mouse studies with bioluminescence tomography,” Opt. Express 14(17), 7801–7809 (2006). [CrossRef] [PubMed]
  16. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005). [CrossRef] [PubMed]
  17. K. H. Song, G. Stoica, and L. V. Wang, “In vivo three-dimensional photoacoustic tomography of a whole mouse head,” Opt. Lett. 31(16), 2453–2455 (2006). [CrossRef] [PubMed]
  18. A. Rosenthal, D. Razansky, and V. Ntziachristos, “Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography,” IEEE Trans. Med. Imaging 29(6), 1275–1285 (2010). [CrossRef] [PubMed]
  19. Q. Fang, “Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates.,” Biomed. Opt. Express 1(1), 165–175 (2010). [CrossRef]
  20. N. Platis and T. Theoharis, “Fast ray-tetrahedron intersection using Plücker coordinates,” J. Graphics GPU Game Tools 8(4), 37–48 (2003).
  21. E. Alerstam, T. Svensson, and S. Andersson-Engels, “CUDAMCML, User manual and implementation notes,” Available from http://www.atomic.physics.lu.se/fileadmin/atomfysik/Biophotonics/Software/CUDAMCML.pdf . (2009).
  22. E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13(6), 060504 (2008). [CrossRef] [PubMed]
  23. L. A. Piegl, and W. Tiller, The NURBS Book, 2nd ed, Monographs in Visual Communications. (Springer, Berlin, 1997).
  24. J. Schöberl, “NETGEN: An advancing front 2D/3D-mesh generator based on abstract rules,” Comput. Visualization Sci. 1(1), 41–52 (1997). [CrossRef]
  25. B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52(3), 577–587 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited