OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 10 — Oct. 1, 2011
  • pp: 2749–2760

Measuring non-radiative relaxation time of fluorophores with biomedical applications by intensity-modulated laser-induced photoacoustic effect

Behrouz Soroushian and Xinmai Yang  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 10, pp. 2749-2760 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1109 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Modulated tone-burst light was employed to measure non-radiative relaxation time of fluorophores with biomedical importance through photoacoustic effect. Non-radiative relaxation time was estimated through the frequency dependence of photoacoustic signal amplitude. Experiments were performed on solutions of new indocyanine green (IR-820), which is a near infrared dye and has biomedical applications, in two different solvents (water and dimethyl sulfoxide (DMSO)). A 1.5 times slower non-radiative relaxation for the solution of dye in DMSO was observed comparing with the aqueous solution. This result agrees well with general finding that non-radiative relaxation of molecules in triplet state depends on viscosity of solvents in which they are dissolved. Measurements of the non-radiative relaxation time can be used as a new source of contrast mechanism in photoacoustic imaging technique. The proposed method has potential applications such as imaging tissue oxygenation and mapping of other chemophysical differences in microenvironment of exogenous biomarkers.

© 2011 OSA

OCIS Codes
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(300.6380) Spectroscopy : Spectroscopy, modulation
(110.5125) Imaging systems : Photoacoustics

ToC Category:
Photoacoustic Imaging and Spectroscopy

Original Manuscript: July 7, 2011
Revised Manuscript: August 19, 2011
Manuscript Accepted: September 5, 2011
Published: September 8, 2011

Behrouz Soroushian and Xinmai Yang, "Measuring non-radiative relaxation time of fluorophores with biomedical applications by intensity-modulated laser-induced photoacoustic effect," Biomed. Opt. Express 2, 2749-2760 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Y. Berezin and S. Achilefu, “Fluorescence lifetime measurements and biological imaging,” Chem. Rev.110(5), 2641–2684 (2010). [CrossRef] [PubMed]
  2. Y. H. Sun, N. Hatami, M. Yee, J. Phipps, D. S. Elson, F. Gorin, R. J. Schrot, and L. Marcu, “Fluorescence lifetime imaging microscopy for brain tumor image-guided surgery,” J. Biomed. Opt.15(5), 056022 (2010). [CrossRef] [PubMed]
  3. J.-M. I. Maarek, L. Marcu, M. C. Fishbein, and W. S. Grundfest, “Time-resolved fluorescence of human aortic wall: use for improved identification of atherosclerotic lesions,” Lasers Surg. Med.27(3), 241–254 (2000). [CrossRef] [PubMed]
  4. P. H. Carpentier, “Méthodes actuelles d’exploration clinique de la microcirculation,” J. Mal. Vasc.26(2), 142–147 (2001). [PubMed]
  5. S. Murata, P. Herman, H. J. Lin, and J. R. Lakowicz, “Fluorescence lifetime imaging of nuclear DNA: effect of fluorescence resonance energy transfer,” Cytometry41(3), 178–185 (2000). [CrossRef] [PubMed]
  6. A. Danielli, C. P. Favazza, K. Maslov, and L. V. Wang, “Single-wavelength functional photoacoustic microscopy in biological tissue,” Opt. Lett.36(5), 769–771 (2011). [CrossRef] [PubMed]
  7. A. Danielli, C. P. Favazza, K. Maslov, and L. V. Wang, “Picosecond absorption relaxation measured with nanosecond laser photoacoustics,” Appl. Phys. Lett.97(16), 163701 (2010). [CrossRef] [PubMed]
  8. S. Ashkenazi, S. W. Huang, T. Horvath, Y. E. L. Koo, and R. Kopelman, “Photoacoustic probing of fluorophore excited state lifetime with application to oxygen sensing,” J. Biomed. Opt.13(3), 034023 (2008). [CrossRef] [PubMed]
  9. K. Maslov and L. V. Wang, “Photoacoustic imaging of biological tissue with intensity-modulated continuous-wave laser,” J. Biomed. Opt.13(2), 024006 (2008). [CrossRef] [PubMed]
  10. Y. Fan, A. Mandelis, G. Spirou, and I. A. Vitkin, “Development of a laser photothermoacoustic frequency-swept system for subsurface imaging: theory and experiment,” J. Acoust. Soc. Am.116(6), 3523–3533 (2004). [CrossRef] [PubMed]
  11. M. Ouzafe, P. Poulet, and J. Chambron, “Photoacoustic detection of triplet state and singlet oxygen in highly absorbing samples,” Photochem. Photobiol.55(4), 491–503 (1992). [CrossRef] [PubMed]
  12. A. Mandelis, N. Baddour, Y. Cai, and R. G. Walmsley, “Laser-induced photothermoacoustic pressure-wave pulses in a polystyrene well and water system used for photomechanical drug delivery,” J. Opt. Soc. Am. B22(5), 1024–1036 (2005). [CrossRef]
  13. S. Boonsang and R. J. Dewhurst, “Pulsed photoacoustic signal characterization incorporating near- and far-field diffraction effects,” Meas. Sci. Technol.16(4), 885–899 (2005). [CrossRef]
  14. A. Mandelis, Y. C. Teng, and B. S. H. Royce, “Phase measurements in the frequency domain photoacoustic spectroscopy of solids,” J. Appl. Phys.50(11), 7138–7146 (1979). [CrossRef]
  15. X. Chen, K. Q. Schwarz, and K. J. Parker, “Acoustic coupling from a focused transducer to a flat plate and back to the transducer,” J. Acoust. Soc. Am.95(6), 3049–3054 (1994). [CrossRef] [PubMed]
  16. X. Chen, D. Phillips, K. Q. Schwarz, J. G. Mottley, and K. J. Parker, “The measurement of backscatter coefficient from a broadband pulse-echo system: a new formulation,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(2), 515–525 (1997). [CrossRef] [PubMed]
  17. J. E. Mark, Polymer Data Handbook, 2nd ed. (Oxford University Press, 2009).
  18. H. Tohmyoh, T. Imaizumi, and M. Saka, “Acoustic resonant spectroscopy for characterization of thin polymer films,” Rev. Sci. Instrum.77(10), 104901 (2006). [CrossRef]
  19. P. K. Wong, P. C. W. Fung, and H. L. Tam, “Low thermal diffusivity measurements of thin films using mirage technique,” J. Appl. Phys.84(12), 6623–6627 (1998). [CrossRef]
  20. G. J. Diebold, “Theory of thin layer photoacoustic cells for determination of volume changes in solution,” J. Phys. Chem. B102(27), 5404–5408 (1998). [CrossRef]
  21. F. A. Schaberle, R. M. D. Nunes, M. Barroso, C. Serpa, and L. G. Arnaut, “Analytical solution for time-resolved photoacoustic calorimetry data and applications to two typical photoreactions,” Photochem. Photobiol. Sci.9(6), 812–822 (2010). [CrossRef] [PubMed]
  22. T. Autrey, N. S. Foster, K. Klepzig, J. E. Amonette, and J. L. Daschbach, “A new angle into time-resolved photoacoustic spectroscopy: A layered prism cell increases experimental flexibility,” Rev. Sci. Instrum.69(6), 2246–2258 (1998). [CrossRef]
  23. F. L. Lizzi, M. Greenebaum, E. J. Feleppa, M. Elbaum, and D. J. Coleman, “Theoretical framework for spectrum analysis in ultrasonic tissue characterization,” J. Acoust. Soc. Am.73(4), 1366–1373 (1983). [CrossRef] [PubMed]
  24. M. Y. Berezin, L. Hyeran, W. Akers, K. Guo, R. J. Goiffon, A. Almutairi, J. M. J. Frechet, and S. Achilefu, “Engineering NIR dyes for fluorescent lifetime contrast,” in Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2009. EMBC 2009 (2009), pp. 114–117.
  25. S. I. Prajapati, C. O. Martinez, A. N. Bahadur, I. Q. Wu, W. Zheng, J. D. Lechleiter, L. M. McManus, G. B. Chisholm, J. E. Michalek, P. K. Shireman, and C. Keller, “Near-infrared imaging of injured tissue in living subjects using IR-820,” Mol. Imaging8(1), 45–54 (2009). [PubMed]
  26. A. Masotti, P. Vicennati, F. Boschi, L. Calderan, A. Sbarbati, and G. Ortaggi, “A novel near-infrared indocyanine dye-polyethylenimine conjugate allows DNA delivery imaging in vivo,” Bioconjug. Chem.19(5), 983–987 (2008). [CrossRef] [PubMed]
  27. S. Telenkov and A. Mandelis, “Signal-to-noise analysis of biomedical photoacoustic measurements in time and frequency domains,” Rev. Sci. Instrum.81(12), 124901 (2010). [CrossRef] [PubMed]
  28. G. A. Holzapfel, G. Sommer, C. T. Gasser, and P. Regitnig, “Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling,” Am. J. Physiol. Heart Circ. Physiol.289(5), H2048–H2058 (2005). [CrossRef] [PubMed]
  29. S. A. Prahl, I. A. Vitkin, U. Bruggemann, B. C. Wilson, and R. R. Anderson, “Determination of optical properties of turbid media using pulsed photothermal radiometry,” Phys. Med. Biol.37(6), 1203–1217 (1992). [CrossRef] [PubMed]
  30. L. Nicolaides, C. Feng, A. Mandelis, and S. H. Abrams, “Quantitative dental measurements by use of simultaneous frequency-domain laser infrared photothermal radiometry and luminescence,” Appl. Opt.41(4), 768–777 (2002). [CrossRef] [PubMed]
  31. E. Delaey, F. van Laar, D. De Vos, A. Kamuhabwa, P. Jacobs, and P. de Witte, “A comparative study of the photosensitizing characteristics of some cyanine dyes,” J. Photochem. Photobiol. B55(1), 27–36 (2000). [CrossRef] [PubMed]
  32. M. Y. Berezin, H. Lee, W. Akers, and S. Achilefu, “Near infrared dyes as lifetime solvatochromic probes for micropolarity measurements of biological systems,” Biophys. J.93(8), 2892–2899 (2007). [CrossRef] [PubMed]
  33. S. Ashkenazi, “Photoacoustic lifetime imaging of dissolved oxygen using methylene blue,” J. Biomed. Opt.15(4), 040501 (2010). [CrossRef] [PubMed]
  34. B. Fückel, D. A. Roberts, Y. Y. Cheng, R. G. C. R. Clady, R. B. Piper, N. Ekins-Daukes, M. J. Crossley, and T. W. Schmidt, “Singlet oxygen mediated photochemical upconversion of NIR light,” J. Phys. Chem. Lett.2(9), 966–971 (2011). [CrossRef]
  35. C. Franco and J. Olmsted, “Photochemical determination of the solubility of oxygen in various media,” Talanta37(9), 905–909 (1990). [CrossRef] [PubMed]
  36. T. R. Rettich, R. Battino, and E. Wilhelm, “Solubility of gases in liquids. 22. High-precision determination of Henry's law constants of oxygen in liquid water from T = 274 K toT = 328 K,” J. Chem. Thermodyn.32(9), 1145–1156 (2000). [CrossRef]
  37. O. Abimbola and N. Tebello, “Solvent effects on the photophysicochemical properties of tetra (tert-butylphenoxy) phthalocyaninato zinc (II),” Acta Phys. Chim. Sin27(5), 1045-1052 (2011).
  38. H. Gratz, A. Penzkofer, C. Abels, R. M. Szeimies, M. Landthaler, and W. Bäumler, “Photo-isomerisation, triplet formation, and photo-degradation dynamics of indocyanine green solutions,” J. Photochem. Photobiol. Chem.128(1-3), 101–109 (1999). [CrossRef]
  39. H. Tian, “The influence on the triplet state in antenna rhodamine dyes of intramolecular energy transfer and charge transfer,” J. Photochem. Photobiol. Chem.91(2), 125–130 (1995). [CrossRef]
  40. S. Murphy, B. Sauerwein, H. G. Drickamer, and G. B. Schuster, “Spectroscopy of cyanine dyes in fluid solution at atmospheric and high-pressure—The effect of viscosity on nonradiative processes,” J. Phys. Chem.98(51), 13476–13480 (1994). [CrossRef]
  41. R. G. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “Reflection mode photoacoustic measurement of speed of sound,” Opt. Express15(6), 3291–3300 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited