OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 10 — Oct. 1, 2011
  • pp: 2837–2849

Combined third-harmonic generation and four-wave mixing microscopy of tissues and embryos

Pierre Mahou, Nicolas Olivier, Guillaume Labroille, Louise Duloquin, Jean-Marc Sintes, Nadine Peyriéras, Renaud Legouis, Delphine Débarre, and Emmanuel Beaurepaire  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 10, pp. 2837-2849 (2011)
http://dx.doi.org/10.1364/BOE.2.002837


View Full Text Article

Enhanced HTML    Acrobat PDF (2119 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nonlinear microscopy can be used to probe the intrinsic optical properties of biological tissues. Using femtosecond pulses, third-harmonic generation (THG) and four-wave mixing (FWM) signals can be efficiently produced and detected simultaneously. Both signals probe a similar parameter, i.e. the real part of the third-order nonlinear susceptibility χ(3). However THG and FWM images result from different phase matching conditions and provide complementary information. We analyze this complementarity using calculations, z-scan measurements on water and oils, and THG-FWM imaging of cell divisions in live zebrafish embryos. The two signals exhibit different sensitivity to sample size and clustering in the half-wavelength regime. Far from resonance, THG images reveal spatial variations |Δχ(3)(−3ω;ω,ω,ω)| with remarkable sensitivity while FWM directly reflects the distribution of χ(3)(−2ω1 + ω2;ω1, –ω2, ω1). We show that FWM images provide χ(3) maps useful for proper interpretation of cellular THG signals, and that combined imaging carries additional structural information. Finally we present simultaneous imaging of intrinsic THG, FWM, second-harmonic (SHG) and two-photon-excited fluorescence (2PEF) signals in live Caenorhabditis elegans worms illustrating the information provided by multimodal nonlinear imaging of unstained tissue.

© 2011 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(190.4160) Nonlinear optics : Multiharmonic generation
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Microscopy

History
Original Manuscript: August 19, 2011
Revised Manuscript: September 19, 2011
Manuscript Accepted: September 19, 2011
Published: September 26, 2011

Citation
Pierre Mahou, Nicolas Olivier, Guillaume Labroille, Louise Duloquin, Jean-Marc Sintes, Nadine Peyriéras, Renaud Legouis, Delphine Débarre, and Emmanuel Beaurepaire, "Combined third-harmonic generation and four-wave mixing microscopy of tissues and embryos," Biomed. Opt. Express 2, 2837-2849 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-10-2837


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21, 1369–1377 (2003). [CrossRef] [PubMed]
  2. W. Mohler, A. C. Millard, and P. J. Campagnola, “Second harmonic imaging of endogenous structural proteins,” Methods29, 97–109 (2003) [CrossRef] [PubMed]
  3. D. Oron, D. Yelin, E. Tal, S. Raz, R. Fachima, and Y. Silberberg, “Depth-resolved structural imaging by third-harmonic generation microscopy,” J. Struct. Biol.147, 3–11 (2004). [CrossRef] [PubMed]
  4. C. K. Sun, S.-W. Chu, S.-Y. Chen, T.-H. Tsai, T.-M. Liu, C.-Y. Lin, and H.-J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct. Biol.147, 19–30 (2004). [CrossRef] [PubMed]
  5. N. Olivier, M. Luengo-Oroz, L. Duloquin, E. Faure, T. Savy, I. Veilleux, X. Solinas, D. Débarre, P. Bourgine, A. Santos, N. Peyriéras, and E. Beaurepaire, “Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy,” Science339, 967–71 (2010). [CrossRef]
  6. Y. Wang, C.-Y. Lin, A. Nikolaenko, V. Raghunathan, and E. O. Potma, “Four-wave mixing microscopy of nanostructures,” Advances in optics and photonics3, 1–52 (2011). [CrossRef]
  7. J.-X. Cheng and X. S. Xie, “Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications,” J. Phys. Chem. B108, 827–840 (2004). [CrossRef]
  8. A. Volkmer, “Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy,” J. Phys. D: Appl. Phys.38, R59–R81 (2005). [CrossRef]
  9. K. Isobe, S. Kataoka, R. Murase, W. Watanabe, T. Higashi, S. Kawakami, S. Matsunaga, K. Fukui, and K. Itoh, “Stimulated parametric emission microscopy,” Opt. Express14, 786–793 (2006). [CrossRef] [PubMed]
  10. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett.70, 922–924 (1997). [CrossRef]
  11. M. Müller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, “3D-microscopy of transparent objects using third-harmonic generation,” J. Microsc.191, 266–274 (1998). [CrossRef] [PubMed]
  12. D. Débarre and E. Beaurepaire, “Quantitative characterization of biological liquids for third-harmonic generation microscopy,” Biophys. J.92, 603–612 (2007). [CrossRef]
  13. D. Débarre, W. Supatto, E. Farge, B. Moulia, M. -C. Schanne-Klein, and E. Beaurepaire, “Velocimetric third-harmonic generation microscopy: micrometer-scale quantification of morphogenetic movements in unstained embryos,” Opt. Lett.29, 2881 (2004). [CrossRef]
  14. D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Methods3, 47–53 (2006). [CrossRef]
  15. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).
  16. J.-X. Cheng and X. S. Xie, “Green’s function formulation for third harmonic generation microscopy,” J. Opt. Soc. Am. B19, 1604–1610 (2002). [CrossRef]
  17. N. Olivier and E. Beaurepaire, “Third-harmonic generation microscopy with focus-engineered beams: a numerical study,” Opt. Express, 16(19), 14703–14715 (2008). [CrossRef] [PubMed]
  18. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanetic system.,” Proc. Royal Soc. A253, 358–379 (1959). [CrossRef]
  19. L. Novotny and B. Hecht, Principles of nano-optics (Cambridge Univ Press, 2006).
  20. G. Clay, A. Millard, C. Schaffer, J. Aus-der-Au, P. Tsai, J. Squier, and D. Kleinfeld, “Spectroscopy of third-harmonic generation: evidence for resonances in model compounds and ligated hemoglobin,” J. Opt. Soc. Am. B23, 932–950 (2006). [CrossRef]
  21. X. Liu, W. Rudolph, and J. L. Thomas, “Characterization and application of femtosecond infrared stimulated parametric emission microscopy,” J. Opt. Soc. Am. B27, 787–795 (2010). [CrossRef]
  22. C. Wang, “Empirical relation between the linear and the thord-order nonlinar optical susceptibilities,” Physssss; Rev. B2, 2045–2048 (1970). [CrossRef]
  23. R. S. Pillai, G. J. Brakenhoff, and M. Müller, “Analysis of the influence of spherical aberration from focusing through a dielectric slab in quantitative nonlinear optical susceptibility measurements using third-harmonic generation,” Opt. Express14, 260–269 (2006). [CrossRef] [PubMed]
  24. R. Barille, L. Canioni, L. Sarger, and G. Rivoire, “Nonlinearity measurements of thin films by third-harmonic generation microscopy,” Phys. Rev. E66, 067602 (2002). [CrossRef]
  25. J.-X. Cheng, A. Volkmer, and X. S. Xie, “Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy,” J. Opt. Soc. Am. B19, 1663–1675 (2002). [CrossRef]
  26. R. Fuentes and J. Fernández, “Ooplasmic segregation in the zebrafish zygote and early embryo: pattern of ooplasmic movements and transport pathways,” Dev. Dyn.2392172–2189 (2010). [CrossRef] [PubMed]
  27. T. Hellerer, C. Axäng, C. Brackmann, P. Hillertz, M. Pilon, and A. Enejder, “Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy,” Proc. Nat. Acad. Sci. USA37, 14658–14663 (2007). [CrossRef]
  28. T. T. Le, H. M. Duren, M. N. Slipchenko, C.-D. Hu, and J.-X. Cheng, “Label-free quantitative analysis of lipid metabolism in living Caenorhabditis elegans,” J. Lipid Res.51, 672–677 (2010). [CrossRef]
  29. M. C. Wang, W. Min, C. W. Freudiger, G. Ruvkun, and X. S. Xie , “RNAi screening for fat regulatory genes with SRS microscopy,” Nat. Methods8, 135–138 (2011). [CrossRef] [PubMed]
  30. G. V. Clokey and L. A. Jacobson, “The autofluorescent lipofuscin granules in the intestinal cells of Caenorhabditis elegans are secondary lysosomes,” Mech. Ageing Dev.35, 79–94 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Supplementary Material


» Media 1: AVI (8724 KB)     
» Media 2: AVI (3106 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited