OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 10 — Oct. 1, 2011
  • pp: 2871–2887

Enhanced video indirect ophthalmoscopy (VIO) via robust mosaicing

Rolando Estrada, Carlo Tomasi, Michelle T. Cabrera, David K. Wallace, Sharon F. Freedman, and Sina Farsiu  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 10, pp. 2871-2887 (2011)
http://dx.doi.org/10.1364/BOE.2.002871


View Full Text Article

Enhanced HTML    Acrobat PDF (3135 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Indirect ophthalmoscopy (IO) is the standard of care for evaluation of the neonatal retina. When recorded on video from a head-mounted camera, IO images have low quality and narrow Field of View (FOV). We present an image fusion methodology for converting a video IO recording into a single, high quality, wide-FOV mosaic that seamlessly blends the best frames in the video. To this end, we have developed fast and robust algorithms for automatic evaluation of video quality, artifact detection and removal, vessel mapping, registration, and multi-frame image fusion. Our experiments show the effectiveness of the proposed methods.

© 2011 OSA

OCIS Codes
(100.0100) Image processing : Image processing
(100.2960) Image processing : Image analysis
(170.4470) Medical optics and biotechnology : Ophthalmology

ToC Category:
Ophthalmology Applications

History
Original Manuscript: August 8, 2011
Revised Manuscript: September 16, 2011
Manuscript Accepted: September 17, 2011
Published: September 29, 2011

Citation
Rolando Estrada, Carlo Tomasi, Michelle T. Cabrera, David K. Wallace, Sharon F. Freedman, and Sina Farsiu, "Enhanced video indirect ophthalmoscopy (VIO) via robust mosaicing," Biomed. Opt. Express 2, 2871-2887 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-10-2871


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Zitova and J. Flusser, “Image registration methods: a survey,” Image Vision Comput.21, 977–1000 (2003). [CrossRef]
  2. M. D. Robinson, C. A. Toth, J. Y. Lo, and S. Farsiu, “Efficient Fourier-wavelet super-resolution,” IEEE Trans. Image Process.19, 2669–2681 (2010). [CrossRef] [PubMed]
  3. W. Tasman, A. Patz, J. McNamara, R. Kaiser, M. Trese, and B. Smith, “Retinopathy of prematurity: the life of a lifetime disease,” Am. J. Ophthalmol.141, 167–174 (2006). [CrossRef] [PubMed]
  4. D. K. Wallace, G. E. Quinn, S. F. Freedman, and M. F. Chiang, “Agreement among pediatric ophthalmologists in diagnosing plus and pre-plus disease in retinopathy of prematurity,” J. Am. Assoc. Pediatric Opthalmol. Strabismus12, 352–356 (2008). [CrossRef]
  5. R. Gelman, M. Martinez-Perez, D. Vanderveen, A. Moskowitz, and A. Fulton, “Diagnosis of plus disease in retinopathy of prematurity using Retinal Image multiScale Analysis,” Invest. Ophthalmol. & Visual Sci.46, 4734–4738 (2005). [CrossRef] [PubMed]
  6. D. Wallace, Z. Zhao, and S. Freedman, “A pilot study using” ROPtool” to quantify plus disease in retinopathy of prematurity.” J. Am. Assoc. Pediatric Opthalmol. Strabismus11, 381–387 (2007). [CrossRef]
  7. S. Ahmad, D. Wallace, S. Freedman, and Z. Zhao, “Computer-assisted assessment of plus disease in retinopathy of prematurity using video indirect ophthalmoscopy images,” Retina28, 1458–1462 (2008). [CrossRef] [PubMed]
  8. F. Zana and J. Klein, “A multimodal registration algorithm of eye fundus images using vessels detection and hough transform,” IEEE Trans. Med. Imaging18, 419–428 (1999). [CrossRef] [PubMed]
  9. C. Stewart, C. Tsai, and B. Roysam, “The dual-bootstrap iterative closest point algorithm with application to retinal image registration,” IEEE Trans. Med. Imaging22, 1379–1394 (2003). [CrossRef] [PubMed]
  10. R. González and R. Woods, Digital Image Processing, 3rd ed.(Prentice Hall, 2008).
  11. H. Cheng, X. Jiang, Y. Sun, and J. Wang, “Color image segmentation: advances and prospects,” Pattern Recognition34, 2259–2281 (2001). [CrossRef]
  12. J. Kautsky, J. Flusser, and B. Zitová, “A new wavelet-based measure of image focus,” Pattern Recognition Lett.23, 1785–1794 (2002). [CrossRef]
  13. M. Subbarao and J. Tyan, “Selecting the optimal focus measure for autofocusing and depth-from-focus,” IEEE Trans. Pattern Anal. Machine Intell.20, 864–870 (1998). [CrossRef]
  14. S. Fox, R. Silver, E. Kornegay, and M. Dagenais, “Focus and edge detection algorithms and their relevance to the development of an optical overlay calibration standard,” Proc. SPIE3677, 95–106 (1999). [CrossRef]
  15. Y. Zhang, Y. Zhang, and C. Wen, “A new focus measure method using moments,” Image Vision Comput.18, 959–965 (2000). [CrossRef]
  16. D. Tsai and C. Chou, “A fast focus measure for video display inspection,” Machine Vision Appl.14, 192–196 (2003).
  17. C. Sun, “De-interlacing of video images using a shortest path technique,” IEEE Trans. Consumer Electron.47, 225–230 (2001). [CrossRef]
  18. S. Lin, Y. Chang, and L. Chen, “Motion adaptive interpolation with horizontal motion detection for deinterlacing,” IEEE Trans. Consumer Electron.49, 1256–1265 (2003). [CrossRef]
  19. D. Tschumperlé and B. Besserer, “High quality deinterlacing using inpainting and shutter-model directed temporal interpolation,” Comput. Vision Graphics32, 301–307 (2006). [CrossRef]
  20. D. Lowe, “Object recognition from local scale-invariant features,” in Proceedings of International Conference on Computer Vision (IEEE, 1999), pp. 1150–1157. [CrossRef]
  21. P. Burt and E. Adelson, “A multiresolution spline with application to image mosaics,” ACM Trans. Graphics2, 217–236 (1983). [CrossRef]
  22. E. Peli, “Contrast in complex images,” J. Opt. Soc. Am. A7, 2032–2040 (1990). [CrossRef] [PubMed]
  23. J. Staal, M. Abràmoff, M. Niemeijer, M. Viergever, and B. van Ginneken, “Ridge-based vessel segmentation in color images of the retina,” IEEE Trans. Med. Imaging23, 501–509 (2004). [CrossRef] [PubMed]
  24. J. Soares, J. Leandro, R. Cesar, H. Jelinek, and M. Cree, “Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification,” IEEE Trans. Med. Imaging25, 1214–1222 (2006). [CrossRef] [PubMed]
  25. J. Starck, F. Murtagh, E. Candes, and D. Donoho, “Gray and color image contrast enhancement by the curvelet transform,” IEEE Trans. Image Processing12, 706–717 (2003). [CrossRef]
  26. T. Acharya and A. Ray, Image Processing: Principles and Applications (Wiley-Interscience, 2005). [CrossRef]
  27. J. Movellan, “Tutorial on Gabor filters,” Open Source Document (2002), http://mplab.ucsd.edu/wordpress/tutorials/gabor.pdf .
  28. S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and M. Goldbaum, “Detection of blood vessels in retinal images using two-dimensional matched filters,” IEEE Trans. Med. Imaging8, 263–269 (1989). [CrossRef] [PubMed]
  29. Q. Li, J. You, L. Zhang, and P. Bhattacharya, “Automated retinal vessel segmentation using Gabor filters and scale multiplication,” in Proceedings International Conference on Image Processing, Computer Vision, and Pattern Recognition (WORLDCOMP, 2006), pp. 3521–3527. [PubMed]
  30. C. Wilson, K. Cocker, M. Moseley, C. Paterson, S. Clay, W. Schulenburg, M. Mills, A. Ells, K. Parker, G. Quinn, A. Fielder, and J. Ng, “Computerized analysis of retinal vessel width and tortuosity in premature infants,” Invest. Ophthalmol. & Visual Sci.49, 3577–3585 (2008). [CrossRef] [PubMed]
  31. C. Kirbas and F. Quek, “A review of vessel extraction techniques and algorithms,” ACM Comput. Surv.36, 81–121 (2004). [CrossRef]
  32. R. Szeliski, “Image alignment and stitching: A tutorial,” Found. Trends Comput. Graphics Vision2, 1–104 (2006). [CrossRef]
  33. A. Zomet, A. Levin, S. Peleg, and Y. Weiss, “Seamless image stitching by minimizing false edges,” IEEE Trans. Image Process.15, 969–977 (2006). [CrossRef] [PubMed]
  34. L. Brown, “A survey of image registration techniques,” ACM Comput. Surv.24, 325–376 (1992). [CrossRef]
  35. J. Maintz and M. Viergever, “A survey of medical image registration,” Med. Image Anal.2, 1–36 (1998). [CrossRef]
  36. M. D. Robinson, S. Farsiu, and P. Milanfar, “Optimal registation of aliased images using variable projection with applications to super-resolution,” Comput. J.52, 31–42 (2009). [CrossRef]
  37. K. Simonson, S. Drescher, and F. Tanner, “A statistics-based approach to binary image registration with uncertainty analysis,” IEEE Trans. Pattern Anal. Machine Intell.29, 112–125 (2007). [CrossRef]
  38. P. Besl and N. McKay, “A method for registration of 3-d shapes,” IEEE Trans. Pattern Anal. Machine Intell.14, 239–256 (1992). [CrossRef]
  39. S. Weik, “Registration of 3-d partial surface models using luminance and depth information,” in Proceedings of the International Conference on Recent Advances in 3-D Digital Imaging and Modeling (IEEE Computer Society, 1997), pp. 93–100. [CrossRef]
  40. A. Wong, W. Bishop, and J. Orchard, “Efficient multi-modal least-squares alignment of medical images using quasi-orientation maps,” in Proceedings of International Conference on Image Processing, Computer Vision, and Pattern Recognition (WORLDCOMP, 2006), pp. 74–80. [PubMed]
  41. A. Fitch, A. Kadyrov, W. Christmas, and J. Kittler, “Fast robust correlation,” IEEE Trans. Image Process.14, 1063–1073 (2005). [CrossRef] [PubMed]
  42. B. Srinivasa and B. Chatterji, “An FFT-based technique for translation, rotation, and scale-invariant image registration,” IEEE Trans. Image Process.5, 1266–1271 (1996). [CrossRef]
  43. G. Wolberg and S. Zokai, “Robust image registration using log-polar transform,” in Proceedings of IEEE International Conference on Image Processing (IEEE, 2000), pp. 493–496.
  44. J. Shi and C. Tomasi, “Good features to track,” in Proceedings of IEEE Computer Vision and Pattern Recognition (IEEE, 1994), pp. 593–593.
  45. M. Daszykowski, K. Kaczmarek, Y. Vander Heyden, and B. Walczak, “Robust statistics in data analysis–a review:: basic concepts,” Chemometrics Intell. Lab. Syst.85, 203–219 (2007). [CrossRef]
  46. S. Farsiu, M. Elad, and P. Milanfar, “Constrained, globally optimal, multi-frame motion estimation,” in Proceedings of IEEE Workshop on Statistical Signal Processing (IEEE, 2005), pp. 1396–1401.
  47. R. Fletcher, “Conjugate gradient methods for indefinite systems,” Numerical Anal.506, 73–89 (1976). [CrossRef]
  48. H. Van der Vorst, “Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems,” SIAM J. Sci. Statist. Comput.13, 631–644 (1992). [CrossRef]
  49. D. Zwillinger, CRC Standard Mathematical Tables and Formulae (Chapman & Hall/CRC, 2003).
  50. J. Phillips, “Survey of absolute orientation techniques,” http://www.cs.duke.edu/jeffp/triseminar/absolute-orientation.pdf .
  51. B. Horn, “Closed-form solution of absolute orientation using unit quaternions,” J. Opt. Soc. Am. A4, 629–642 (1987). [CrossRef]
  52. Y. K. Tao, S. Farsiu, and J. A. Izatt, “Interlaced spectrally encoded confocal scanning laser ophthalmoscopy and spectral domain optical coherence tomography,” Biomed. Opt. Express1, 431–440 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited