OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 10 — Oct. 1, 2011
  • pp: 2905–2916

Automated detection and cell density assessment of keratocytes in the human corneal stroma from ultrahigh resolution optical coherence tomograms

Amir-Hossein Karimi, Alexander Wong, and Kostadinka Bizheva  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 10, pp. 2905-2916 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1729 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Keratocytes are fibroblast-like cells that maintain the optical clarity and the overall health of the cornea. The ability to measure precisely their density and spatial distribution in the cornea is important for the understanding of corneal healing processes and the diagnostics of some corneal disorders. A novel computerized approach to detection and counting of keratocyte cells from ultra high resolution optical coherence tomography (UHR-OCT) images of the human corneal stroma is presented. The corneal OCT data is first processed using a state-of-the-art despeckling algorithm to reduce the effect of speckle on detection accuracy. A thresholding strategy is then employed to allow for improved delineation of keratocyte cells by suppressing similarly shaped features in the data, followed by a second-order moment analysis to identify potential cell nuclei candidates. Finally, a local extrema strategy is used to refine the candidates to determine the locations and the number of keratocyte cells. Cell density distribution analysis was carried in 3D UHR-OCT images of the human corneal stroma, acquired in-vivo. The cell density results obtained using the proposed novel approach correlate well with previous work on computerized keratocyte cell counting from confocal microscopy images of human cornea.

© 2011 OSA

OCIS Codes
(100.0100) Image processing : Image processing
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(100.3008) Image processing : Image recognition, algorithms and filters

ToC Category:
Optical Coherence Tomography

Original Manuscript: August 11, 2011
Revised Manuscript: September 16, 2011
Manuscript Accepted: September 21, 2011
Published: September 29, 2011

Amir-Hossein Karimi, Alexander Wong, and Kostadinka Bizheva, "Automated detection and cell density assessment of keratocytes in the human corneal stroma from ultrahigh resolution optical coherence tomograms," Biomed. Opt. Express 2, 2905-2916 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. J. Müller, L. Pels, and G. F. Vrensen, “Novel aspects of the ultrastructural organization of human corneal keratocytes,” Invest. Ophthalmol. Vis. Sci.36(13), 2557–2567 (1995). [PubMed]
  2. J. R. Hassell and D. E. Birk, “The molecular basis of corneal transparency,” Exp. Eye Res.91(3), 326–335 (2010). [CrossRef] [PubMed]
  3. M. C. Snyder, J. P. Bergmanson, and M. J. Doughty, “Keratocytes: no more the quiet cells,” J. Am. Optom. Assoc.69(3), 180–187 (1998). [PubMed]
  4. S. V. Patel, J. W. McLaren, J. J. Camp, L. R. Nelson, and W. M. Bourne, “Automated quantification of keratocyte density by using confocal microscopy in vivo,” Invest. Ophthalmol. Vis. Sci.40(2), 320–326 (1999). [PubMed]
  5. M. Popper, A. M. Morgado, M. J. Quadrado, and J. A. Van Best, “Corneal cell density measurement in vivo by scanning slit confocal microscopy: method and validation,” Ophthalmic Res.36(5), 270–276 (2004). [CrossRef] [PubMed]
  6. J. W. McLaren, S. V. Patel, C. B. Nau, and W. M. Bourne, “Automated assessment of keratocyte density in clinical confocal microscopy of the corneal stroma,” J. Microsc.229(1), 21–31 (2008). [CrossRef] [PubMed]
  7. J. McLaren, W. Bourne, and S. Patel, “Automated assessment of keratocyte density in stromal images from theConfoScan 4 confocal microscope,” Invest. Ophthalmol. Vis. Sci.51(4), 1918–1926 (2010). [CrossRef]
  8. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  9. A. F. Fercher, “Optical coherence tomography,” J. Biomed. Opt.1(2), 157–173 (1996). [CrossRef]
  10. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994). [PubMed]
  11. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express17(6), 4842–4858 (2009). [CrossRef] [PubMed]
  12. M. Gora, K. Karnowski, M. Szkulmowski, B. J. Kaluzny, R. Huber, A. Kowalczyk, and M. Wojtkowski, “Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range,” Opt. Express17(17), 14880–14894 (2009). [CrossRef] [PubMed]
  13. V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol.125(8), 1027–1035 (2007). [CrossRef] [PubMed]
  14. E. Götzinger, M. Pircher, M. Sticker, A. F. Fercher, and C. K. Hitzenberger, “Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography,” J. Biomed. Opt.9(1), 94–102 (2004). [CrossRef] [PubMed]
  15. L. Kagemann, G. Wollstein, H. Ishikawa, R. A. Bilonick, P. M. Brennen, L. S. Folio, M. L. Gabriele, and J. S. Schuman, “Identification and assessment of Schlemm’s canal by spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.51(8), 4054–4059 (2010). [CrossRef] [PubMed]
  16. J. A. Eichel, A. K. Mishra, D. A. Clausi, P. W. Fieguth, and K. K. Bizheva, “A novel algorithm for extraction ofthe layers of the cornea,” in 2009 Canadian Conference on Computer and Robot Vision (IEEE Computer Society,2009), pp. 313-320.
  17. F. LaRocca, S. J. Chiu, R. P. McNabb, A. N. Kuo, J. A. Izatt, and S. Farsiu, “Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming,” Biomed. Opt. Express2(6), 1524–1538 (2011). [CrossRef] [PubMed]
  18. J. Kim, D. Miller, E. Kim, S. Oh, J. Oh, and T. Milner, “Optical coherence tomography speckle reduction by apartially spatially coherent source,” J. Biomed. Opt.10(6), 064034 (2005). [CrossRef]
  19. M. Pircher, E. Gotzinger, R. Leitgeb, A. F. Fercher, and C. K. Hitzenberger, “Speckle reduction in optical coherence tomography by frequency compounding,” J. Biomed. Opt.8(3), 565–569 (2003). [CrossRef] [PubMed]
  20. N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical coherence tomography by “path length encoded” angular compounding,” J. Biomed. Opt.8(2), 260–263 (2003). [CrossRef] [PubMed]
  21. A. E. Desjardins, B. J. Vakoc, W. Y. Oh, S. M. R. Motaghiannezam, G. J. Tearney, and B. E. Bouma, “Angle-resolved optical coherence tomography with sequential angular selectivity for speckle reduction,” Opt. Express15(10), 6200–6209 (2007). [CrossRef] [PubMed]
  22. T. Jørgensen, L. Thrane, M. Mogensen, F. Pedersen, and P. Andersen, “Speckle reduction in optical coherencetomography images of human skin by a spatial diversity method,” Proc. SPIE6627, 66270P, 66270P-5 (2007). [CrossRef]
  23. A. Wong, A. Mishra, K. Bizheva, and D. A. Clausi, “General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery,” Opt. Express18(8), 8338–8352 (2010). [CrossRef] [PubMed]
  24. A. Pizurica, W. Philips, I. Lemahieu, and M. Acheroy, “A versatile wavelet domain noise filtration technique for medical imaging,” IEEE Trans. Med. Imaging22(3), 323–331 (2003). [CrossRef] [PubMed]
  25. Y. Yu and S. T. Acton, “Speckle reducing anisotropic diffusion,” IEEE Trans. Image Process.11(11), 1260–1270 (2002). [CrossRef] [PubMed]
  26. P. Puvanathasan and K. Bizheva, “Interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in optical coherence tomography images,” Opt. Express17(2), 733–746 (2009). [CrossRef] [PubMed]
  27. W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt.9(1), 47–74 (2004). [CrossRef] [PubMed]
  28. J. Schmitt, S. Xiang, and K. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt.4(1), 95–105 (1999). [CrossRef]
  29. A. Noble, “Descriptions of image surfaces,” Ph.D. thesis (Oxford University, 1989).
  30. J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern Anal. Mach. Intell.PAMI-8(6), 679–698 (1986). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited