OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 11 — Nov. 1, 2011
  • pp: 2934–2949

Model of bleaching and acquisition for superresolution microscopy controlled by a single wavelength

Alex Small  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 11, pp. 2934-2949 (2011)
http://dx.doi.org/10.1364/BOE.2.002934


View Full Text Article

Enhanced HTML    Acrobat PDF (863 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We consider acquisition schemes that maximize the fraction of images that contain only a single activated molecule (as opposed to multiple activated molecules) in superresolution localization microscopy of fluorescent probes. During a superresolution localization microscopy experiment, irreversible photobleaching destroys fluorescent molecules, limiting the ability to monitor the dynamics of long-lived processes. Here we consider experiments controlled by a single wavelength, so that the bleaching and activation rates are coupled variables. We use variational techniques and kinetic models to demonstrate that this coupling of bleaching and activation leads to very different optimal control schemes, depending on the detailed kinetics of fluorophore activation and bleaching. Likewise, we show that the robustness of the acquisition scheme is strongly dependent on the detailed kinetics of activation and bleaching.

© 2011 OSA

OCIS Codes
(100.6640) Image processing : Superresolution
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Microscopy

History
Original Manuscript: August 8, 2011
Revised Manuscript: August 28, 2011
Manuscript Accepted: August 31, 2011
Published: September 30, 2011

Citation
Alex Small, "Model of bleaching and acquisition for superresolution microscopy controlled by a single wavelength," Biomed. Opt. Express 2, 2934-2949 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-11-2934


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Lidke, B. Rieger, T. Jovin, and R. Heintzmann, “Superresolution by localization of quantum dots using blinking statistics,” Opt. Express13, 7052–7062 (2005). [CrossRef] [PubMed]
  2. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science313, 1642–1645 (2006). [CrossRef] [PubMed]
  3. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (storm),” Nat. Methods3, 793–795 (2006). [CrossRef] [PubMed]
  4. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J.91, 4258–4272 (2006). [CrossRef] [PubMed]
  5. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J.82, 2775–2783 (2002). [CrossRef] [PubMed]
  6. R. J. Ober, S. Ram, and E. S. Ward, “Localization accuracy in single-molecule microscopy,” Biophysical Journal86, 1185–1200 (2004). [CrossRef] [PubMed]
  7. H. Shroff, C. G. Galbraith, J. A. Galbraith, and E. Betzig, “Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics,” Nat. Methods5, 417–423 (2008). [CrossRef] [PubMed]
  8. S. A. Ribeiro, P. Vagnarelli, Y. Dong, T. Hori, B. F. McEwen, T. Fukagawa, C. Flors, and W. C. Earnshaw, “A super-resolution map of the vertebrate kinetochore,” Proc. Natl Acad. Sci. U.S.A.107, 10484–10489 (2010). [CrossRef] [PubMed]
  9. D. Greenfield, A. L. McEvoy, H. Shroff, G. E. Crooks, N. S. Wingreen, E. Betzig, and J. Liphardt, “Self-organization of the escherichia coli chemotaxis network imaged with super-resolution light microscopy,” PLoS Biol.7, e1000137 (2009). [CrossRef] [PubMed]
  10. N. A. Frost, H. Shroff, H. Kong, E. Betzig, and T. A. Blanpied, “Single-molecule discrimination of discrete perisynaptic and distributed sites of actin filament assembly within dendritic spines,” Neuron67, 86–99 (2010). [CrossRef] [PubMed]
  11. S. T. Hess, T. J. Gould, M. V. Gudheti, S. A. Maas, K. D. Mills, and J. Zimmerberg, “Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories,” Proc. Natl. Acad. Sci. U.S.A.104, 17370 (2007). [CrossRef] [PubMed]
  12. T. A. Brown, R. D. Fetter, A. N. Tkachuk, and D. A. Clayton, “Approaches toward super-resolution fluorescence imaging of mitochondrial proteins using palm,” Methods51, 458–463 (2010). [CrossRef] [PubMed]
  13. B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3d storm reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods5, 1047 (2008). [CrossRef] [PubMed]
  14. J. Folling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, and S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods5, 943–945 (2008). [CrossRef] [PubMed]
  15. C. Steinhauer, C. Forthmann, J. Vogelsang, and P. Tinnefeld, “Superresolution microscopy on the basis of engineered dark states,” J. Am. Chem. Soc130, 16840–16841 (2008). [CrossRef] [PubMed]
  16. D. Baddeley, I. D. Jayasinghe, C. Cremer, M. B. Cannell, and C. Soeller, “Light-induced dark states of organic fluochromes enable 30 nm resolution imaging in standard media,” Biophys. J.96, L22–L24 (2009). [CrossRef] [PubMed]
  17. M. Heilemann, S. van de Linde, A. Mukherjee, and M. Sauer, “Super-resolution imaging with small organic fluorophores,” Angew. Chem. Int. Ed.48, 6903–6908 (2009). [CrossRef]
  18. I. Testa, C. A. Wurm, R. Medda, E. Rothermel, C. Von Middendorf, J. Flling, S. Jakobs, A. Schnle, S. W. Hell, and C. Eggeling, “Multicolor fluorescence nanoscopy in fixed and living cells by exciting conventional fluorophores with a single wavelength,” Biophys. J.99, 2686–2694 (2010). [CrossRef] [PubMed]
  19. S. Lee, M. Thompson, M. A. Schwartz, L. Shapiro, and W. E. Moerner, “Super-resolution imaging of the nucleoid-associated protein hu in caulobacter crescentus,” Biophys. J.100, L31–L33 (2011). [CrossRef] [PubMed]
  20. J. Vogelsang, T. Cordes, C. Forthmann, C. Steinhauer, and P. Tinnefeld, “Controlling the fluorescence of ordinary oxazine dyes for single-molecule switching and superresolution microscopy,” Proc. Natl. Acad. Sci. U.S.A.106, 8107–8112 (2009). [CrossRef] [PubMed]
  21. E. Shore and A. Small, “Optimal acquisition scheme for subwavelength localization microscopy of bleachable fluorophores,” Opt. Lett.36, 289–291 (2011). [CrossRef] [PubMed]
  22. A. Small, “Theoretical limits on errors and acquisition rates in localizing switchable fluorophores,” Biophys. J.96, L16–L18 (2009). [CrossRef] [PubMed]
  23. F. Huang, S. L. Schwartz, J. M. Byars, and K. A. Lidke, “Simultaneous multiple-emitter fitting for single molecule super-resolution imaging,” Biomed. Opt. Express2, 1377–1393 (2011). [CrossRef] [PubMed]
  24. H. Goldstein, Classical mechanics (Addison-Wesley Pub. Co., 1980).
  25. B. Chachuat, Nonlinear and Dynamic Optimization: From Theory to Practice (Laboratoire dAutomatique, Ecole Polytechnique Federale de Lausanne, Lecture Notes for Winter Semester, 2007).
  26. M. Bates, B. Huang, and X. Zhuang, “Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes,” Curr. Opinion Chem. Biol.12, 505–514 (2008). [CrossRef]
  27. T. Gould and S. Hess, “Nanoscale biological fluorescence imaging: Breaking the diffraction barrier,” Methods Cell Biol.89, 329–358 (2008). [CrossRef]
  28. C. S. Smith, N. Joseph, B. Rieger, and K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nat. Methods7, 373–375 (2010). [CrossRef] [PubMed]
  29. C. Eggeling, J. Widengren, R. Rigler, and C. A. M. Seidel, “Photobleaching of fluorescent dyes under conditions used for single-molecule detection: evidence of two-step photolysis,” Anal. Chem70, 2651–2659 (1998). [CrossRef] [PubMed]
  30. G. Donnert, C. Eggeling, and S. W. Hell, “Major signal increase in fluorescence microscopy through dark-state relaxation,” Nat. Methods4, 81–86 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited