OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 11 — Nov. 1, 2011
  • pp: 2973–2981

Photoacoustic section imaging with an integrating cylindrical detector

Sibylle Gratt, Klaus Passler, Robert Nuster, and Guenther Paltauf  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 11, pp. 2973-2981 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (4517 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A piezoelectric detector with a cylindrical shape is investigated for photoacoustic section imaging. Images are acquired by rotating a sample in front of the cylindrical detector. With its length exceeding the size of the imaging object, it works as an integrating sensor and therefore allows reconstructing section images with the inverse Radon transform. Prior to the reconstruction the Abel transform is applied to the measured signals to improve the accuracy of the image. A resolution of about 100 µm within a section and of 500 µm between sections is obtained. Additionally, a series of images of a zebra fish is shown.

© 2011 OSA

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(110.5120) Imaging systems : Photoacoustic imaging
(110.7170) Imaging systems : Ultrasound

ToC Category:
Photoacoustic Imaging and Spectroscopy

Original Manuscript: August 5, 2011
Revised Manuscript: September 19, 2011
Manuscript Accepted: September 20, 2011
Published: October 3, 2011

Sibylle Gratt, Klaus Passler, Robert Nuster, and Guenther Paltauf, "Photoacoustic section imaging with an integrating cylindrical detector," Biomed. Opt. Express 2, 2973-2981 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. H. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006). [CrossRef]
  2. R. A. Kruger, W. L. Kiser, D. R. Reinecke, G. A. Kruger, and K. D. Miller, “Thermoacoustic molecular imaging of small animals,” Mol. Imaging2(2), 113–123 (2003). [CrossRef] [PubMed]
  3. X. D. Wang, Y. J. Pang, G. Ku, X. Y. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol.21(7), 803–806 (2003). [CrossRef] [PubMed]
  4. R. Ma, A. Taruttis, V. Ntziachristos, and D. Razansky, “Multispectral optoacoustic tomography (MSOT) scanner for whole-body small animal imaging,” Opt. Express17(24), 21414–21426 (2009). [CrossRef] [PubMed]
  5. Z. Xu, Q. Zhu, and L. V. Wang, “In vivo photoacoustic tomography of mouse cerebral edema induced by cold injury,” J. Biomed. Opt.16(6), 066020 (2011). [CrossRef] [PubMed]
  6. R. G. M. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Lasers Med. Sci.21(3), 134–139 (2006). [CrossRef] [PubMed]
  7. J. Laufer, J. O. Cleary, E. Z. Zhang, M. F. Lythgoe, and P. C. Beard, “Photoacoustic imaging of vascular networks in transgenic mice,” Proc. SPIE7564, 75641A, 75641A-5 (2010). [CrossRef]
  8. M. P. Fronheiser, S. A. Ermilov, H. P. Brecht, A. Conjusteau, R. Su, K. Mehta, and A. A. Oraevsky, “Real-time optoacoustic monitoring and three-dimensional mapping of a human arm vasculature,” J. Biomed. Opt.15(2), 021305 (2010). [CrossRef] [PubMed]
  9. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt.14(2), 024007 (2009). [CrossRef] [PubMed]
  10. S. Manohar, A. Kharine, J. C. van Hespen, W. Steenbergen, and T. G. van Leeuwen, “The Twente Photoacoustic Mammoscope: system overview and performance,” Phys. Med. Biol.50(11), 2543–2557 (2005). [CrossRef] [PubMed]
  11. M. Heijblom, D. Piras, E. Ten Tije, W. F. Xia, J. van Hespen, J. Klaase, F. van den Engh, T. van Leeuwen, W. Steenbergen, and S. Manohar, “Breast imaging using the Twente Photoacoustic Mammoscope (PAM): new clinical measurements,” Proc. SPIE8087, 80870N, 80870N-7 (2011). [CrossRef]
  12. U. Oberheide, I. Bruder, H. Welling, W. Ertmer, and H. Lubatschowski, “Optoacoustic imaging for optimization of laser cyclophotocoagulation,” J. Biomed. Opt.8(2), 281–287 (2003). [CrossRef] [PubMed]
  13. M. Haltmeier, O. Scherzer, P. Burgholzer, and G. Paltauf, “Thermoacoustic computed tomography with large planar receivers,” Inverse Probl.20(5), 1663–1673 (2004). [CrossRef]
  14. P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography using integrating detectors,” Proc. SPIE5864, 586403, 586403-12 (2005). [CrossRef]
  15. D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Köster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics3(7), 412–417 (2009). [CrossRef]
  16. P. Burgholzer, C. Hofer, G. Paltauf, M. Haltmeier, and O. Scherzer, “Thermoacoustic tomography with integrating area and line detectors,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(9), 1577–1583 (2005). [CrossRef] [PubMed]
  17. G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer, “Photoacoustic tomography with integrating area and line detectors,” in Photoacoustic Imaging and Spectroscopy, L. V. Wang, ed. (CRC Press, Boca Raton, FL, 2009), pp. 251–263.
  18. P. Burgholzer, J. Bauer-Marschallinger, H. Grün, M. Haltmeier, and G. Paltauf, “Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors,” Inverse Probl.23(6), S65–S80 (2007). [CrossRef]
  19. D. Xiang, N. N. Hsu, and G. V. Blessing, “The design, construction and application of a large aperture lens-less line-focus PVDF transducer,” Ultrasonics34(6), 641–647 (1996). [CrossRef]
  20. A. Oraevsky and A. Karabutov, “Ultimate sensitivity of time-resolved opto-acoustic detection,” Proc. SPIE3916, 228–239 (2000). [CrossRef]
  21. A. Rosenthal, V. Ntziachristos, and D. Razansky, “Model-based optoacoustic inversion with arbitrary-shape detectors,” Med. Phys.38(7), 4285–4295 (2011). [CrossRef] [PubMed]
  22. M. Haltmeier and G. Zangerl, “Spatial resolution in photoacoustic tomography: effects of detector size and detector bandwidth,” Inverse Probl.26(12), 125002 (2010). [CrossRef]
  23. M. H. Xu and L. V. Wang, “Analytic explanation of spatial resolution related to bandwidth and detector aperture size in thermoacoustic or photoacoustic reconstruction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.67(5), 056605 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited