OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 11 — Nov. 1, 2011
  • pp: 2982–2994

3D imaging of biofilms on implants by detection of scattered light with a scanning laser optical tomograph

Marko Heidrich, Mark P. Kühnel, Manuela Kellner, Raoul-Amadeus Lorbeer, Tineke Lange, Andreas Winkel, Meike Stiesch, Heiko Meyer, and Alexander Heisterkamp  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 11, pp. 2982-2994 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2689 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Biofilms – communities of microorganisms attached to surfaces – are a constant threat for long-term success in modern implantology. The application of laser scanning microscopy (LSM) has increased the knowledge about microscopic properties of biofilms, whereas a 3D imaging technique for the large scale visualization of bacterial growth and migration on curved and non-transparent surfaces is not realized so far.Towards this goal, we built a scanning laser optical tomography (SLOT) setup detecting scattered laser light to image biofilm on dental implant surfaces. SLOT enables the visualization of living biofilms in 3D by detecting the wavelength-dependent absorption of non-fluorescent stains like e.g. reduced triphenyltetrazolium chloride (TTC) accumulated within metabolically active bacterial cells. Thus, the presented system allows the large scale investigation of vital biofilm structure and in vitro development on cylindrical and non-transparent objects without the need for fluorescent vital staining. We suggest SLOT to be a valuable tool for the structural and volumetric investigation of biofilm formation on implants with sizes up to several millimeters.

© 2011 OSA

OCIS Codes
(110.0110) Imaging systems : Imaging systems
(180.0180) Microscopy : Microscopy
(180.5810) Microscopy : Scanning microscopy
(180.6900) Microscopy : Three-dimensional microscopy
(290.0290) Scattering : Scattering
(110.6955) Imaging systems : Tomographic imaging

ToC Category:

Original Manuscript: August 8, 2011
Revised Manuscript: September 2, 2011
Manuscript Accepted: September 2, 2011
Published: October 3, 2011

Marko Heidrich, Mark P. Kühnel, Manuela Kellner, Raoul-Amadeus Lorbeer, Tineke Lange, Andreas Winkel, Meike Stiesch, Heiko Meyer, and Alexander Heisterkamp, "3D imaging of biofilms on implants by detection of scattered light with a scanning laser optical tomograph," Biomed. Opt. Express 2, 2982-2994 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. G. Anderson and G. A. O’Toole, “Innate and induced resistance mechanisms of bacterial biofilms,” Curr. Top. Microbiol. Immunol.322, 85–105 (2008). [CrossRef] [PubMed]
  2. W. Heuer, A. Kettenring, S. N. Stumpp, J. Eberhard, E. Gellermann, A. Winkel, and M. Stiesch, “Metagenomic analysis of the peri-implant and periodontal microflora in patients with clinical signs of gingivitis or mucositis,” Clin. Oral Invest. (to be published), http://www.springerlink.com/content/g1r731m87777jt43/ .
  3. T. Beikler and T. F. Flemmig, “Oral biofilm-associated diseases: trends and implications for quality of life, systemic health and expenditures,” Periodontology200055, 87–103 (2011). [CrossRef]
  4. N. U. Zitzmann and T. Berglundh, “Definition and prevalence of peri-implant diseases,” J. Clin. Periodontol.35, 286–291 (2008). [CrossRef] [PubMed]
  5. J. R. Lawrence, D. R. Korber, B. D. Hoyle, J. W. Costerton, and D. E. Caldwell, “Optical sectioning of microbial biofilms.” J. Bacteriol.173, 6558–6567 (1991). [PubMed]
  6. T. R. Neu, B. Manz, F. Volke, J. J. Dynes, A. P. Hitchcock, and J. R. Lawrence, “Advanced imaging techniques for assessment of structure, composition and function in biofilm systems,” FEMS Microbiol. Ecol.72, 1–21 (2010). [CrossRef] [PubMed]
  7. E. Morgenroth and K. Milferstedt, “Biofilm engineering: linking biofilm development at different length and time scales,” Rev. Environ. Sci. Bio/Technology8, 203–208 (2009). [CrossRef]
  8. T. J. Battin, W. T. Sloan, S. Kjelleberg, H. Daims, I. M. Head, T. P. Curtis, and L. Eberl, “Microbial landscapes: new paths to biofilm research,” Nat. Rev. Microbiol.5, 76–81 (2007). [CrossRef]
  9. J. M. Tyszka, S. E. Fraser, and R. E. Jacobs, “Magnetic resonance microscopy: recent advances and applications,” Curr. Opinion Biotechnol.16, 93–99 (2005). [CrossRef]
  10. B. Manz, F. Volke, D. Goll, and H. Horn, “Measuring local flow velocities and biofilm structure in biofilm systems with magnetic resonance imaging (MRI),” Biotechnol. Bioeng.84, 424–432 (2003). [CrossRef] [PubMed]
  11. J. D. Seymour, S. L. Codd, E. L. Gjersing, and P. S. Stewart, “Magnetic resonance microscopy of biofilm structure and impact on transport in a capillary bioreactor,” J. Magn. Reson.167, 322–327 (2004). [CrossRef] [PubMed]
  12. J. S. McLean, O. N. Ona, and P. D. Majors, “Correlated biofilm imaging, transport and metabolism measurements via combined nuclear magnetic resonance and confocal microscopy,” ISME J2, 121–131 (2007). [CrossRef]
  13. Z. Lewandowski, S. A. Altobelli, and E. Fukushima, “NMR and microelectrode studies of hydrodynamics and kinetics in biofilms,” Biotechnol. Prog.9, 40–45 (1993). [CrossRef]
  14. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254, 1178 –1181 (1991). [CrossRef] [PubMed]
  15. C. Xi, D. Marks, S. Schlachter, W. Luo, and S. A. Boppart, “High-resolution three-dimensional imaging of biofilm development using optical coherence tomography,” J. Biomed. Opt.11, 034001 (2006). [CrossRef]
  16. C. Haisch and R. Niessner, “Visualisation of transient processes in biofilms by optical coherence tomography,” Water Res.41, 2467–2472 (2007). [CrossRef] [PubMed]
  17. M. Wagner, D. Taherzadeh, C. Haisch, and H. Horn, “Investigation of the mesoscale structure and volumetric features of biofilms using optical coherence tomography,” Biotechnol. Bioeng.107, 844–853 (2010). [CrossRef] [PubMed]
  18. C. T. Nguyen, H. Tu, E. J. Chaney, C. N. Stewart, and S. A. Boppart, “Non-invasive optical interferometry for the assessment of biofilm growth in the middle ear,” Biomed. Opt. Express1, 1104–1116 (2010). [CrossRef]
  19. R. Lorbeer, M. Heidrich, C. Lorbeer, D. F. Ramírez Ojeda, G. Bicker, H. Meyer, and A. Heisterkamp, “Highly efficient 3D fluorescence microscopy with a scanning laser optical tomograph,” Opt. Express19, 5419–5430 (2011). [CrossRef] [PubMed]
  20. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science296, 541–545 (2002). [CrossRef] [PubMed]
  21. J. Gabrielson, M. Hart, A. Jarelöv, I. Kühn, D. McKenzie, and R. Möllby, “Evaluation of redox indicators and the use of digital scanners and spectrophotometer for quantification of microbial growth in microplates,” J. Microbiol. Methods50, 63–73 (2002). [CrossRef] [PubMed]
  22. E. Kun and L. G. Abood, “Colorimetric estimation of succinic dehydrogenase by triphenyltetrazolium chloride,” Science109, 144 –146 (1949). [CrossRef] [PubMed]
  23. R. Kuhn and D. Jerchel, “Über Invertseifen, VIII. mitteil.: Reduktion von Tetrazoliumsalzen durch Bakterien, gärende Hefe und keimende Samen,” Ber. Dtsch. Chem. Ges. A B74, 949–952 (1941). [CrossRef]
  24. P. L. Steponkus and F. O. Lanphear, “Refinement of the triphenyl tetrazolium chloride method of determining cold injury,” Plant Physiol.42, 1423 –1426 (1967). [CrossRef] [PubMed]
  25. S. Bolte and F. P. Cordelières, “A guided tour into subcellular colocalization analysis in light microscopy,” J. Microsc.224, 213–232 (2006). [CrossRef]
  26. H. Meyer, A. Garofalakis, G. Zacharakis, S. Psycharakis, C. Mamalaki, D. Kioussis, E. N. Economou, V. Ntziachristos, and J. Ripoll, “Noncontact optical imaging in mice with full angular coverage and automatic surface extraction,” Appl. Opt.46, 3617–3627 (2007). [CrossRef] [PubMed]
  27. J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Correction of artefacts in optical projection tomography,” Phys. Med. Biol.50, 4645–4665 (2005). [CrossRef] [PubMed]
  28. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am.66, 1145–1150 (1976). [CrossRef]
  29. R. Lorbeer, H. Meyer, M. Heidrich, H. Lubatschowski, and A. Heisterkamp, “Applying optical Fourier filtering to standard optical projection tomography,” Proc. SPIE7570, 75700 (2010). [CrossRef]
  30. J. R. Walls, J. G. Sled, J. Sharpe, and R. M. Henkelman, “Resolution improvement in emission optical projection tomography,” Phys. Med. Biology52, 2775–2790 (2007). [CrossRef]
  31. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, New York, 2008). [CrossRef]
  32. H. Meyer, A. Darrell, A. Metaxakis, C. Savakis, and J. Ripoll, “Optical projection tomography for in-vivo imaging of drosophila melanogaster,” Microsc. Anal.22, 19–22 (2008).
  33. H. Meyer, “Optical projection tomography in biological model organisms,” Ph.D. thesis (Erasmus Universiteit, Rotterdam, Netherlands, 2010).
  34. U. J. Birk, M. Rieckher, N. Konstantinides, A. Darrell, A. Sarasa-Renedo, H. Meyer, N. Tavernarakis, and J. Ripoll, “Correction for specimen movement and rotation errors for in-vivo optical projection tomography,” Biomed. Opt. Express1, 87–96 (2010). [CrossRef]
  35. M. Rieckher, U. J. Birk, H. Meyer, J. Ripoll, and N. Tavernarakis, “Microscopic optical projection tomography in vivo,” PLoS One6, e18963 (2011). [CrossRef] [PubMed]
  36. J. McGinty, H. B. Taylor, L. Chen, L. Bugeon, J. R. Lamb, M. J. Dallman, and P. M. W. French, “In vivo fluorescence lifetime optical projection tomography,” Biomed. Opt. Express2, 1340–1350 (2011). [CrossRef] [PubMed]
  37. K. Subramani, R. E. Jung, A. Molenberg, and C. H. F. Hammerle, “Biofilm on dental implants: a review of the literature,” Int. J. Oral Maxillofacial Implants24, 616–626 (2009).
  38. R. P. Tengerdy, J. G. Nagy, and B. Martin, “Quantitative measurement of bacterial growth by the reduction of tetrazolium salts,” Appl. Microbiol.15, 954–955 (1967). [PubMed]
  39. M. Burmølle, J. S. Webb, D. Rao, L. H. Hansen, S. J. Sørensen, and S. Kjelleberg, “Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms,” Appl. Environ. Microbiol.72, 3916–3923 (2006). [CrossRef] [PubMed]
  40. M. Kuehn, M. Hausner, H. Bungartz, M. Wagner, P. A. Wilderer, and S. Wuertz, “Automated confocal laser scanning microscopy and semiautomated image processing for analysis of biofilms,” Appl. Environ. Microbiol.64, 4115–4127 (1998). [PubMed]
  41. A. Heydorn, A. T. Nielsen, M. Hentzer, C. Sternberg, M. Givskov, B. K. Ersbøll, and S. Molin, “Quantification of biofilm structures by the novel computer program COMSTAT,” Microbiology146, 2395 –2407 (2000). [PubMed]
  42. H. Beyenal, C. Donovan, Z. Lewandowski, and G. Harkin, “Three-dimensional biofilm structure quantification,” J. Microbiol. Methods59, 395–413 (2004). [CrossRef] [PubMed]
  43. H. Daims, S. Lücker, and M. Wagner, “daime, a novel image analysis program for microbial ecology and biofilm research,” Environ. Microbiol.8, 200–213 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (2791 KB)     
» Media 2: MOV (3977 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited