OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 11 — Nov. 1, 2011
  • pp: 3021–3036

Imaging workflow and calibration for CT-guided time-domain fluorescence tomography

Kenneth M. Tichauer, Robert W. Holt, Fadi El-Ghussein, Qun Zhu, Hamid Dehghani, Frederic Leblond, and Brian W. Pogue  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 11, pp. 3021-3036 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1292 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this study, several key optimization steps are outlined for a non-contact, time-correlated single photon counting small animal optical tomography system, using simultaneous collection of both fluorescence and transmittance data. The system is presented for time-domain image reconstruction in vivo, illustrating the sensitivity from single photon counting and the calibration steps needed to accurately process the data. In particular, laser time- and amplitude-referencing, detector and filter calibrations, and collection of a suitable instrument response function are all presented in the context of time-domain fluorescence tomography and a fully automated workflow is described. Preliminary phantom time-domain reconstructed images demonstrate the fidelity of the workflow for fluorescence tomography based on signal from multiple time gates.

© 2011 OSA

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues

ToC Category:
Diffuse Optical Imaging

Original Manuscript: July 11, 2011
Revised Manuscript: August 17, 2011
Manuscript Accepted: September 22, 2011
Published: October 5, 2011

Virtual Issues
Advances in Optics for Biotechnology, Medicine, and Surgery (2011) Biomedical Optics Express

Kenneth M. Tichauer, Robert W. Holt, Fadi El-Ghussein, Qun Zhu, Hamid Dehghani, Frederic Leblond, and Brian W. Pogue, "Imaging workflow and calibration for CT-guided time-domain fluorescence tomography," Biomed. Opt. Express 2, 3021-3036 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Rudin, M. Rausch, and M. Stoeckli, “Molecular imaging in drug discovery and development: potential and limitations of nonnuclear methods,” Mol. Imaging Biol.7(1), 5–13 (2005). [CrossRef] [PubMed]
  2. S. Arridge, “Optical tomography in medical imaging,” Inverse Probl.15(2), R41–R93 (1999). [CrossRef]
  3. V. Ntziachristos, C. Bremer, and R. Weissleder, “Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging,” Eur. Radiol.13(1), 195–208 (2003). [PubMed]
  4. J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol.7(5), 626–634 (2003). [CrossRef] [PubMed]
  5. F. Leblond, S. C. Davis, P. A. Valdés, and B. W. Pogue, “Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications,” J. Photochem. Photobiol. B98(1), 77–94 (2010). [CrossRef] [PubMed]
  6. J. Cao, A. Moosman, and V. E. Johnson, “A Bayesian chi-squared goodness-of-fit test for censored data models,” Biometrics66(2), 426–434 (2010). [CrossRef] [PubMed]
  7. A. Da Silva, M. Leabad, C. Driol, T. Bordy, M. Debourdeau, J. M. Dinten, P. Peltié, and P. Rizo, “Optical calibration protocol for an x-ray and optical multimodality tomography system dedicated to small-animal examination,” Appl. Opt.48(10), D151–D162 (2009). [CrossRef] [PubMed]
  8. S. C. Davis, B. W. Pogue, R. Springett, C. Leussler, P. Mazurkewitz, S. B. Tuttle, S. L. Gibbs-Strauss, S. S. Jiang, H. Dehghani, and K. D. Paulsen, “Magnetic resonance-coupled fluorescence tomography scanner for molecular imaging of tissue,” Rev. Sci. Instrum.79(6), 064302 (2008). [CrossRef] [PubMed]
  9. X. Guo, X. Liu, X. Wang, F. Tian, F. Liu, B. Zhang, G. Hu, and J. Bai, “A combined fluorescence and microcomputed tomography system for small animal imaging,” IEEE Trans. Biomed. Eng.57(12), 2876–2883 (2010). [CrossRef] [PubMed]
  10. Y. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Opt. Express18(8), 7835–7850 (2010). [CrossRef] [PubMed]
  11. Y. Lin, M. T. Ghijsen, H. Gao, N. Liu, O. Nalcioglu, and G. Gulsen, “A photo-multiplier tube-based hybrid MRI and frequency domain fluorescence tomography system for small animal imaging,” Phys. Med. Biol.56(15), 4731–4747 (2011). [CrossRef] [PubMed]
  12. R. B. Schulz, A. Ale, A. Sarantopoulos, M. Freyer, E. Soehngen, M. Zientkowska, and V. Ntziachristos, “Hybrid system for simultaneous fluorescence and x-ray computed tomography,” IEEE Trans. Med. Imaging29(2), 465–473 (2010). [CrossRef] [PubMed]
  13. F. Stuker, C. Baltes, K. Dikaiou, D. Vats, L. Carrara, E. Charbon, J. Ripoll, and M. Rudin, “Hybrid small animal imaging system combining magnetic resonance imaging with fluorescence tomography using single photon avalanche diode detectors,” IEEE Trans. Med. Imaging30(6), 1265–1273 (2011). [CrossRef] [PubMed]
  14. X. Yang, H. Gong, G. Quan, Y. Deng, and Q. Luo, “Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging,” Rev. Sci. Instrum.81(5), 054304 (2010). [CrossRef] [PubMed]
  15. X. Zhang, C. Badea, G. Hood, A. Wetzel, Y. Qi, J. Stiles, and G. A. Johnson, “High-resolution reconstruction of fluorescent inclusion in mouse thorax using anatomically guided sampling and parallel Monte Carlo computing,” Biomed. Opt. Express2(9), 2449–2460 (2011). [CrossRef]
  16. S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, “Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice,” J. Biomed. Opt.10(5), 054003 (2005). [CrossRef] [PubMed]
  17. M. Brambilla, L. Spinelli, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved scanning system for double reflectance and transmittance fluorescence imaging of diffusive media,” Rev. Sci. Instrum.79(1), 013103 (2008). [CrossRef] [PubMed]
  18. J. B. Domínguez and Y. Bérubé-Lauzière, “Diffuse light propagation in biological media by a time-domain parabolic simplified spherical harmonics approximation with ray-divergence effects,” Appl. Opt.49(8), 1414–1429 (2010). [CrossRef] [PubMed]
  19. F. Gao, J. Li, L. Zhang, P. Poulet, H. Zhao, and Y. Yamada, “Simultaneous fluorescence yield and lifetime tomography from time-resolved transmittances of small-animal-sized phantom,” Appl. Opt.49(16), 3163–3172 (2010). [CrossRef] [PubMed]
  20. M. Hassan, J. Riley, V. Chernomordik, P. Smith, R. Pursley, S. B. Lee, J. Capala, and A. H. Gandjbakhche, “Fluorescence lifetime imaging system for in vivo studies,” Mol. Imaging6(4), 229–236 (2007). [PubMed]
  21. A. T. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, and D. A. Boas, “A time domain fluorescence tomography system for small animal imaging,” IEEE Trans. Med. Imaging27(8), 1152–1163 (2008). [CrossRef] [PubMed]
  22. A. Laidevant, L. Hervé, M. Debourdeau, J. Boutet, N. Grenier, and J. M. Dinten, “Fluorescence time-resolved imaging system embedded in an ultrasound prostate probe,” Biomed. Opt. Express2(1), 194–206 (2011). [CrossRef] [PubMed]
  23. A. May, S. Bhaumik, S. S. Gambhir, C. Zhan, and S. Yazdanfar, “Whole-body, real-time preclinical imaging of quantum dot fluorescence with time-gated detection,” J. Biomed. Opt.14(6), 060504 (2009). [CrossRef] [PubMed]
  24. M. J. Niedre, R. H. de Kleine, E. Aikawa, D. G. Kirsch, R. Weissleder, and V. Ntziachristos, “Early photon tomography allows fluorescence detection of lung carcinomas and disease progression in mice in vivo,” Proc. Natl. Acad. Sci. U.S.A.105(49), 19126–19131 (2008). [CrossRef] [PubMed]
  25. R. E. Nothdurft, S. V. Patwardhan, W. Akers, Y. Ye, S. Achilefu, and J. P. Culver, “In vivo fluorescence lifetime tomography,” J. Biomed. Opt.14(2), 024004 (2009). [CrossRef] [PubMed]
  26. B. Montcel and P. Poulet, “An instrument for small-animal imaging using time-resolved diffuse and fluorescence optical methods,” Nucl. Instrum. Meth. Phys. Res. Sec. A569(2), 551–556 (2006). [CrossRef]
  27. V. Y. Soloviev, K. B. Tahir, J. McGinty, D. S. Elson, M. A. Neil, P. M. French, and S. R. Arridge, “Fluorescence lifetime imaging by using time-gated data acquisition,” Appl. Opt.46(30), 7384–7391 (2007). [CrossRef] [PubMed]
  28. V. Venugopal, J. Chen, F. Lesage, and X. Intes, “Full-field time-resolved fluorescence tomography of small animals,” Opt. Lett.35(19), 3189–3191 (2010). [CrossRef] [PubMed]
  29. J. Wu, Y. Wang, L. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Time-resolved multichannel imaging of fluorescent objects embedded in turbid media,” Opt. Lett.20(5), 489–491 (1995). [CrossRef] [PubMed]
  30. M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, and A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett.21(2), 158–160 (1996). [CrossRef] [PubMed]
  31. D. Kepshire, N. Mincu, M. Hutchins, J. Gruber, H. Dehghani, J. Hypnarowski, F. Leblond, M. Khayat, and B. W. Pogue, “A microcomputed tomography guided fluorescence tomography system for small animal molecular imaging,” Rev. Sci. Instrum.80(4), 043701 (2009). [CrossRef] [PubMed]
  32. V. Ntziachristos and R. Weissleder, “Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation,” Opt. Lett.26(12), 893–895 (2001). [CrossRef] [PubMed]
  33. D. L. Kepshire, H. Dehghani, F. Leblond, and B. W. Pogue, “Automatic exposure control and estimation of effective system noise in diffuse fluorescence tomography,” Opt. Express17(25), 23272–23283 (2009). [CrossRef] [PubMed]
  34. M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol.50(12), 2837–2858 (2005). [CrossRef] [PubMed]
  35. A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of the normalized Born ratio,” IEEE Trans. Med. Imaging24(10), 1377–1386 (2005). [CrossRef] [PubMed]
  36. F. E. W. Schmidt, M. E. Fry, E. M. C. Hillman, J. C. Hebden, and D. T. Delpy, “A 32-channel time-resolved instrument for medical optical tomography,” Rev. Sci. Instrum.71(1), 256–265 (2000). [CrossRef]
  37. V. Ntziachristos, X. H. Ma, A. G. Yodh, and B. Chance, “Multichannel photon counting instrument for spatially resolved near infrared spectroscopy,” Rev. Sci. Instrum.70(1), 193–201 (1999). [CrossRef]
  38. R. Holt, F. El-Ghussein, K. M. Tichauer, F. Leblond, and B. W. Pogue, “Hybrid approach combining microCT and fluorescence tomography: imaging workflow and system of coordinate registration,” Proc. SPIE7892, 789213, 789213-8 (2011). [CrossRef]
  39. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009). [CrossRef] [PubMed]
  40. F. Leblond, K. M. Tichauer, and B. W. Pogue, “Singular value decomposition metrics show limitations of detector design in diffuse fluorescence tomography,” Biomed. Opt. Express1(5), 1514–1531 (2010). [CrossRef] [PubMed]
  41. D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, “Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth,” Appl. Opt.46(10), 1669–1678 (2007). [CrossRef] [PubMed]
  42. Q. Zhu, F. Leblond, F. El-Ghussein, B. W. Pogue, and H. Dehghani, “Development and evaluation of a time-resolved near-infrared fluorescence finite element model,” Proc. SPIE7896, 78960T, 78960T-13 (2011). [CrossRef]
  43. F. Leblond, H. Dehghani, D. Kepshire, and B. W. Pogue, “Early-photon fluorescence tomography: spatial resolution improvements and noise stability considerations,” J. Opt. Soc. Am. A26(6), 1444–1457 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (8038 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited