OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 11 — Nov. 1, 2011
  • pp: 3037–3046

Micrometer axial resolution OCT for corneal imaging

Rahul Yadav, Kye-Sung Lee, Jannick P. Rolland, James M. Zavislan, James V. Aquavella, and Geunyoung Yoon  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 11, pp. 3037-3046 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1725 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optical coherence tomography (OCT) for high axial resolution corneal imaging is presented. The system uses 375 nm bandwidth (625 to 1000 nm) from a broadband supercontinuum light source. The system was developed in free space to minimize image quality degradation due to dispersion. A custom-designed spectrometer based on a Czerny Turner configuration was implemented to achieve an imaging depth of 1 mm. Experimentally measured axial resolution was 1.1 μm in corneal tissue and had a good agreement with the theoretically calculated resolution from the envelope of the spectral interference fringes. In vivo imaging was carried out and thin corneal layers such as the tear film and the Bowman’s layer were quantified in normal, keratoconus, and contact lens wearing eyes, indicating the system’s suitability for several ophthalmic applications.

© 2011 OSA

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Ophthalmology Applications

Original Manuscript: June 23, 2011
Revised Manuscript: September 10, 2011
Manuscript Accepted: October 4, 2011
Published: October 6, 2011

Rahul Yadav, Kye-Sung Lee, Jannick P. Rolland, James M. Zavislan, James V. Aquavella, and Geunyoung Yoon, "Micrometer axial resolution OCT for corneal imaging," Biomed. Opt. Express 2, 3037-3046 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun.117(1-2), 43–48 (1995). [CrossRef]
  3. M. R. Hee, J. A. Izatt, E. A. Swanson, D. Huang, J. S. Schuman, C. P. Lin, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol.113(3), 325–332 (1995). [PubMed]
  4. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994). [PubMed]
  5. J. J. Kałusny, M. Wojtkowski, and A. Kowalczyk, “Imaging of the anterior segment of the eye by spectra optical coherence tomography,” Opt. Appl.32, 581–589 (2002).
  6. D. A. Atchison and J. Smith, Optics of the Human Eye (Elsevier, 2002).
  7. I. Jalbert, F. Stapleton, E. Papas, D. F. Sweeney, and M. Coroneo, “In vivo confocal microscopy of the human cornea,” Br. J. Ophthalmol.87(2), 225–236 (2003). [CrossRef] [PubMed]
  8. R. L. Niederer, D. Perumal, T. Sherwin, and C. N. J. McGhee, “Laser scanning in vivo confocal microscopy reveals reduced innervation and reduction in cell density in all layers of the keratoconic cornea,” Invest. Ophthalmol. Vis. Sci.49(7), 2964–2970 (2008). [CrossRef] [PubMed]
  9. R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express12(10), 2156–2165 (2004). [CrossRef] [PubMed]
  10. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12(11), 2404–2422 (2004). [CrossRef] [PubMed]
  11. V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M. L. Gabriele, M. Wojtkowski, V. Srinivasan, J. G. Fujimoto, J. S. Duker, D. K. Dhaliwal, and J. S. Schuman, “In vivo corneal high-speed, ultra high-resolution optical coherence tomography,” Arch. Ophthalmol.125(8), 1027–1035 (2007). [CrossRef] [PubMed]
  12. M. A. Shousha, V. L. Perez, J. Wang, T. Ide, S. Jiao, Q. Chen, V. Chang, N. Buchser, S. R. Dubovy, W. Feuer, and S. H. Yoo, “Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy,” Ophthalmology117(6), 1220–1227 (2010). [CrossRef] [PubMed]
  13. N. Hutchings, T. L. Simpson, C. Hyun, A. A. Moayed, S. Hariri, L. Sorbara, and K. Bizheva, “Swelling of the human cornea revealed by high-speed, ultrahigh-resolution optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.51(9), 4579–4584 (2010). [CrossRef] [PubMed]
  14. J. Wang, D. Fonn, T. L. Simpson, and L. Jones, “Precorneal and pre- and postlens tear film thickness measured indirectly with optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.44(6), 2524–2528 (2003). [CrossRef] [PubMed]
  15. Q. Chen, J. Wang, A. Tao, M. Shen, S. Jiao, and F. Lu, “Ultrahigh-resolution measurement by optical coherence tomography of dynamic tear film changes on contact lenses,” Invest. Ophthalmol. Vis. Sci.51(4), 1988–1993 (2010). [CrossRef] [PubMed]
  16. P. E. King-Smith, B. A. Fink, R. M. Hill, K. W. Koelling, and J. M. Tiffany, “The thickness of the tear film,” Curr. Eye Res.29(4-5), 357–368 (2004). [CrossRef] [PubMed]
  17. W. Drexler, “Ultrahigh-resolution optical coherence tomography,” J. Biomed. Opt.9(1), 47–74 (2004). [CrossRef] [PubMed]
  18. American National Standards Institute, “American national standard for safe use of lasers,” ANSI Z136.1-2007 (2007).
  19. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett.24(17), 1221–1223 (1999). [CrossRef] [PubMed]
  20. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. S. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett.27(20), 1800–1802 (2002). [CrossRef] [PubMed]
  21. Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,” Opt. Lett.28(3), 182–184 (2003). [CrossRef] [PubMed]
  22. G. Häusler and M. W. Linduer, “Coherence radar and spectral radar-new tools for dermatological diagnosis,” J. Biomed. Opt.3(1), 21–31 (1998). [CrossRef]
  23. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express11(8), 889–894 (2003). [CrossRef] [PubMed]
  24. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett.28(21), 2067–2069 (2003). [CrossRef] [PubMed]
  25. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11(18), 2183–2189 (2003). [CrossRef] [PubMed]
  26. K. S. Lee, K. P. Thompson, and J. P. Rolland, “Broadband astigmatism-corrected Czerny-Turner spectrometer,” Opt. Express18(22), 23378–23384 (2010). [CrossRef] [PubMed]
  27. B. Rabbetts, Bennett & Rabbetts’ Clinical Visual Optics (Elsevier 2007).
  28. M. Czerny and A. F. Turner, “Über den Astigmatismus bei Spiegelspektrometern,” Z. Phys.61, 792–797 (1930). [CrossRef]
  29. B. Shafer, L. R. Megill, and L. Droppleman, “Optimization of the Czerny-Turner spectrometer,” J. Opt. Soc. Am.54(7), 879–887 (1964). [CrossRef]
  30. Q. Xue, S. Wang, and F. Lu, “Aberration-corrected Czerny-Turner imaging spectrometer with a wide spectral region,” Appl. Opt.48(1), 11–16 (2009). [CrossRef] [PubMed]
  31. W. Drexler, C. K. Hitzenberger, A. Baumgartner, O. Findl, H. Sattmann, and A. F. Fercher, “Investigation of dispersion effects in ocular media by multiple wavelength partial coherence interferometry,” Exp. Eye Res.66(1), 25–33 (1998). [CrossRef] [PubMed]
  32. C. K. Hitzenberger, A. Baumgartner, and A. F. Fercher, “Dispersion induced multiple signal peak splitting in partial coherence interferometry,” Opt. Commun.154(4), 179–185 (1998). [CrossRef]
  33. C. K. Hitzenberger, A. Baumgartner, W. Drexler, and A. F. Fercher, “Dispersion effects in partial coherence interferometry: implications for intraocular ranging,” J. Biomed. Opt.4(1), 144–151 (1999). [CrossRef]
  34. S. Patel, J. Marshall, and F. W. Fitzke, “Refractive index of the human corneal epithelium and stroma,” J. Refract. Surg.11(2), 100–105 (1995). [PubMed]
  35. J. H. Krachmer, R. S. Feder, and M. W. Belin, “Keratoconus and related noninflammatory corneal thinning disorders,” Surv. Ophthalmol.28(4), 293–322 (1984). [CrossRef] [PubMed]
  36. W. J. Kim, Y. S. Rabinowitz, D. M. Meisler, and S. E. Wilson, “Keratocyte apoptosis associated with keratoconus,” Exp. Eye Res.69(5), 475–481 (1999). [CrossRef] [PubMed]
  37. J. T. Coyle, “Keratoconus and eye rubbing,” Am. J. Ophthalmol.97(4), 527–528 (1984). [PubMed]
  38. M. S. Macsai, G. A. Varley, and J. H. Krachmer, “Development of keratoconus after contact lens wear. patient characteristics,” Arch. Ophthalmol.108(4), 534–538 (1990). [PubMed]
  39. A. Rahi, P. Davies, M. Ruben, D. Lobascher, and J. Menon, “Keratoconus and coexisting atopic disease,” Br. J. Ophthalmol.61(12), 761–764 (1977). [CrossRef] [PubMed]
  40. R. J. Harrison, P. T. Klouda, D. L. Easty, M. Manku, J. Charles, and C. M. Stewart, “Association between keratoconus and atopy,” Br. J. Ophthalmol.73(10), 816–822 (1989). [CrossRef] [PubMed]
  41. B. E. Caffery, D. Richter, T. Simpson, D. Fonn, M. Doughty, and K. Gordon, “The prevalence of dry eye in contact lens wearers: part 2 of the Canadian Dry Eye Epidemiology study,” Invest. Ophthalmol. Vis. Sci.37, S72 (1996).
  42. M. J. Doughty, D. Fonn, D. Richter, T. Simpson, B. Caffery, and K. Gordon, “A patient questionnaire approach to estimating the prevalence of dry eye symptoms in patients presenting to optometric practices across Canada,” Optom. Vis. Sci.74(8), 624–631 (1997). [CrossRef] [PubMed]
  43. G. T. Timberlake, M. G. Doane, and J. H. Bertera, “Short-term, low-contrast visual acuity reduction associated with in vivo contact lens drying,” Optom. Vis. Sci.69(10), 755–760 (1992). [CrossRef] [PubMed]
  44. R. Tutt, A. Bradley, C. Begley, and L. N. Thibos, “Optical and visual impact of tear break-up in human eyes,” Invest. Ophthalmol. Vis. Sci.41(13), 4117–4123 (2000). [PubMed]
  45. T. Hayashi and I. Fatt, “A lubrication theory model of tear exchange under a soft contact lens,” Am. J. Optom. Physiol. Opt.53(3), 101–103 (1976). [PubMed]
  46. L. Wagner, K. Polse, and R. Mandell, “Tear pumping and edema with soft contact lenses,” Invest. Ophthalmol. Vis. Sci.19(11), 1397–1400 (1980). [PubMed]
  47. S. A. Little and A. S. Bruce, “Postlens tear film morphology, lens movement and symptoms in hydrogel lens wearers,” Ophthalmic Physiol. Opt.14(1), 65–69 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited