OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 11 — Nov. 1, 2011
  • pp: 3047–3057

Tissue oximetry: a comparison of mean values of regional tissue saturation, reproducibility and dynamic range of four NIRS-instruments on the human forearm

Simon Hyttel-Sorensen, Line C. Sorensen, Joan Riera, and Gorm Greisen  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 11, pp. 3047-3057 (2011)
http://dx.doi.org/10.1364/BOE.2.003047


View Full Text Article

Enhanced HTML    Acrobat PDF (1457 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We compared absolute values of regional tissue hemoglobin saturation (StO2), reproducibility, and dynamic range of four different instruments on the forearm of adults. The sensors were repositioned 10 times on each subject. Dynamic range was estimated by exercise with subsequent arterial occlusion. Mean StO2 was 70.1% ± 6.7 with INVOS 5100, 69.4% ± 5.0 with NIRO 200 NX, 63.4% ± 4.5 with NIRO 300, and 60.8% ± 3.6 with OxyPrem. The corresponding reproducibility Sw was 5.4% (CI 4.4–6.9), 4.4% (CI 3.5–5.2), 4.1% (CI 3.3–4.9), and 2.7% (CI 2.2–3.2), respectively. The dynamic ranges ΔStO2 were 45.0%, 46.8%, 44.8%, and 27.8%, respectively. In conclusion, the three commercial NIRS instruments showed different absolute values, whereas reproducibility and dynamic range were quite similar.

© 2011 OSA

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(300.6190) Spectroscopy : Spectrometers

ToC Category:
Noninvasive Optical Diagnostics

History
Original Manuscript: August 24, 2011
Revised Manuscript: October 1, 2011
Manuscript Accepted: October 1, 2011
Published: October 6, 2011

Citation
Simon Hyttel-Sorensen, Line C. Sorensen, Joan Riera, and Gorm Greisen, "Tissue oximetry: a comparison of mean values of regional tissue saturation, reproducibility and dynamic range of four NIRS-instruments on the human forearm," Biomed. Opt. Express 2, 3047-3057 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-11-3047


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Heringlake, C. Garbers, J. H. Käbler, I. Anderson, H. Heinze, J. Schön, K.-U. Berger, L. Dibbelt, H.-H. Sievers, and T. Hanke, “Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery,” Anesthesiology114(1), 58–69 (2011). [CrossRef] [PubMed]
  2. M. C. Toet, P. M. A. Lemmers, L. J. van Schelven, and F. van Bel, “Cerebral oxygenation and electrical activity after birth asphyxia: their relation to outcome,” Pediatrics117(2), 333–339 (2006). [CrossRef] [PubMed]
  3. J. C. Hirsch, J. R. Charpie, R. G. Ohye, and J. G. Gurney, “Near infrared spectroscopy (NIRS) should not be standard of care for postoperative management,” Semin. Thorac. Cardiovasc. Surg. Pediatr. Card. Surg. Annu.13(1), 51–54 (2010). [CrossRef] [PubMed]
  4. G. Greisen, “Is near-infrared spectroscopy living up to its promises?” Semin. Fetal Neonatal Med.11(6), 498–502 (2006). [CrossRef] [PubMed]
  5. R. E. Gagnon, A. J. Macnab, F. A. Gagnon, D. Blackstock, and J. G. LeBlanc, “Comparison of two spatially resolved NIRS oxygenation indices,” J. Clin. Monit. Comput.17(7/8), 385–391 (2002). [CrossRef] [PubMed]
  6. A. Dullenkopf, B. Frey, O. Baenziger, A. Gerber, and M. Weiss, “Measurement of cerebral oxygenation state in anaesthetized children using the INVOS 5100 cerebral oximeter,” Paediatr. Anaesth.13(5), 384–391 (2003). [CrossRef] [PubMed]
  7. L. C. Sorensen and G. Greisen, “Precision of measurement of cerebral tissue oxygenation index using near-infrared spectroscopy in preterm neonates,” J. Biomed. Opt.11(5), 054005 (2006). [CrossRef] [PubMed]
  8. J. Menke, U. Voss, G. Möller, and G. Jorch, “Reproducibility of cerebral near infrared spectroscopy in neonates,” Biol. Neonate83(1), 6–11 (2003). [CrossRef] [PubMed]
  9. M. Wolf, M. Keel, V. Dietz, K. von Siebenthal, H. U. Bucher, and O. Baenziger, “The influence of a clear layer on near-infrared spectrophotometry measurements using a liquid neonatal head phantom,” Phys. Med. Biol.44(7), 1743–1753 (1999). [CrossRef] [PubMed]
  10. L. C. Sorensen, T. S. Leung, and G. Greisen, “Comparison of cerebral oxygen saturation in premature infants by near-infrared spatially resolved spectroscopy: observations on probe-dependent bias,” J. Biomed. Opt.13(6), 064013 (2008). [CrossRef] [PubMed]
  11. F. Y. Wong, N. B. Witcombe, S. R. Yiallourou, S. Yorkston, A. R. Dymowski, L. Krishnan, A. M. Walker, and R. S. C. Horne, “Cerebral oxygenation is depressed during sleep in healthy term infants when they sleep prone,” Pediatrics127(3), e558–e565 (2011). [CrossRef] [PubMed]
  12. P. M. A. Lemmers, M. C. Toet, and F. van Bel, “Impact of patent ductus arteriosus and subsequent therapy with indomethacin on cerebral oxygenation in preterm infants,” Pediatrics121(1), 142–147 (2008). [CrossRef] [PubMed]
  13. S. R. Arridge, M. Cope, and D. T. Delpy, “The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis,” Phys. Med. Biol.37(7), 1531–1560 (1992). [CrossRef] [PubMed]
  14. P. van der Zee, M. Cope, S. R. Arridge, M. Essenpreis, L. A. Potter, A. D. Edwards, J. S. Wyatt, D. C. McCormick, S. C. Roth, E. O. Reynolds, and D. T. Delpy, “Experimentally measured optical pathlengths for the adult head, calf and forearm and the head of the newborn infant as a function of inter optode spacing,” Adv. Exp. Med. Biol.316, 143–153 (1992). [CrossRef] [PubMed]
  15. S. J. Matcher, P. Kirkpatrick, K. Nahid, M. Cope, and D. T. Delpy, “Absolute quantification methods in tissue near infrared spectroscopy,” Proc. SPIE2389, 486–495 (1995). [CrossRef]
  16. “NIRS Technology,” www.somanetics.com/our-technology/nirs-technology#trend .
  17. D. M. Hueber, S. Fantini, A. E. Cerussi, and B. Barbieri, “New optical probe designs for absolute (self-calibrating) nir tissue hemoglobin measurements,” Proc. SPIE3597, 618–631 (1999). [CrossRef]
  18. J. M. Bland and D. G. Altman, “Measurement error,” BMJ313(7059), 744 (1996). [PubMed]
  19. K. Yoshitani, M. Kawaguchi, K. Tatsumi, K. Kitaguchi, and H. Furuya, “A comparison of the INVOS 4100 and the NIRO 300 near-infrared spectrophotometers,” Anesth. Analg.94(3), 586–590 (2002). [CrossRef] [PubMed]
  20. E. G. McKeating, J. R. Monjardino, D. F. Signorini, M. J. Souter, and P. J. Andrews, “A comparison of the Invos 3100 and the Critikon 2020 near-infrared spectrophotometers as monitors of cerebral oxygenation,” Anaesthesia52(2), 136–140 (1997). [CrossRef] [PubMed]
  21. M. Thavasothy, M. Broadhead, C. Elwell, M. Peters, and M. Smith, “A comparison of cerebral oxygenation as measured by the NIRO 300 and the INVOS 5100 Near-Infrared Spectrophotometers,” Anaesthesia57(10), 999–1006 (2002). [CrossRef] [PubMed]
  22. N. Nagdyman, P. Ewert, B. Peters, O. Miera, T. Fleck, and F. Berger, “Comparison of different near-infrared spectroscopic cerebral oxygenation indices with central venous and jugular venous oxygenation saturation in children,” Paediatr. Anaesth.18(2), 160–166 (2008). [PubMed]
  23. T. Komiyama, V. Quaresima, H. Shigematsu, and M. Ferrari, “Comparison of two spatially resolved near-infrared photometers in the detection of tissue oxygen saturation: poor reliability at very low oxygen saturation,” Clin. Sci.101(6), 715–718 (2001). [CrossRef] [PubMed]
  24. K. Shiroishi, R. Kime, T. Osada, N. Murase, K. Shimomura, and T. Katsumura, “Decreased muscle oxygenation and increased arterial blood flow in the non-exercising limb during leg exercise,” Adv. Exp. Med. Biol.662, 379–384 (2010). [CrossRef] [PubMed]
  25. C. E. Cooper, S.-M. Penfold, C. E. Elwell, and C. Angus, “Comparison of local adipose tissue content and SRS-derived NIRS muscle oxygenation measurements in 90 individuals,” Adv. Exp. Med. Biol.662, 177–181 (2010). [CrossRef] [PubMed]
  26. T. J. Germon, A. E. Young, A. R. Manara, and R. J. Nelson, “Extracerebral absorption of near infrared light influences the detection of increased cerebral oxygenation monitored by near infrared spectroscopy,” J. Neurol. Neurosurg. Psychiatry58(4), 477–479 (1995). [CrossRef] [PubMed]
  27. G. Grubhofer, A. Lassnigg, F. Manlik, E. Marx, W. Trubel, and M. Hiesmayr, “The contribution of extracranial blood oxygenation on near-infrared spectroscopy during carotid thrombendarterectomy,” Anaesthesia52(2), 116–120 (1997). [CrossRef] [PubMed]
  28. P. G. Al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Evaluation of a near-infrared spectrometer (NIRO 300) for the detection of intracranial oxygenation changes in the adult head,” Stroke32(11), 2492–2500 (2001). [CrossRef] [PubMed]
  29. C. Jenny, M. Biallas, I. Trajkovic, J.-C. Fauchère, H.-U. Bucher, and M. Wolf, “Reproducibility of cerebral tissue oxygen saturation measurements by near-infrared spectroscopy in newborn infants,” J. Biomed. Opt.16(9), 097004 (2011). [CrossRef] [PubMed]
  30. A. Dullenkopf, A. Kolarova, G. Schulz, B. Frey, O. Baenziger, and M. Weiss, “Reproducibility of cerebral oxygenation measurement in neonates and infants in the clinical setting using the NIRO 300 oximeter,” Pediatr. Crit. Care Med.6(3), 344–347 (2005). [CrossRef] [PubMed]
  31. J. M. Bland and D. G. Altman, “Measuring agreement in method comparison studies,” Stat. Methods Med. Res.8(2), 135–160 (1999). [CrossRef] [PubMed]
  32. M. Pocivalnik, G. Pichler, H. Zotter, N. Tax, W. Müller, and B. Urlesberger, “Regional tissue oxygen saturation: comparability and reproducibility of different devices,” J. Biomed. Opt.16(5), 057004 (2011). [CrossRef] [PubMed]
  33. H. M. Watzman, C. D. Kurth, L. M. Montenegro, J. Rome, J. M. Steven, and S. C. Nicolson, “Arterial and venous contributions to near-infrared cerebral oximetry,” Anesthesiology93(4), 947–953 (2000). [CrossRef] [PubMed]
  34. F. Y. Wong, T. Alexiou, T. Samarasinghe, V. Brodecky, and A. M. Walker, “Cerebral arterial and venous contributions to tissue oxygenation index measured using spatially resolved spectroscopy in newborn lambs,” Anesthesiology113(6), 1385–1391 (2010). [CrossRef] [PubMed]
  35. F. Felici, V. Quaresima, L. Fattorini, P. Sbriccoli, G. C. Filligoi, and M. Ferrari, “Biceps brachii myoelectric and oxygenation changes during static and sinusoidal isometric exercises,” J. Electromyogr. Kinesiol.19(2), e1–e11 (2009). [CrossRef] [PubMed]
  36. K. J. Kek, R. Kibe, M. Niwayama, N. Kudo, and K. Yamamoto, “Optical imaging instrument for muscle oxygenation based on spatially resolved spectroscopy,” Opt. Express16(22), 18173–18187 (2008). [CrossRef] [PubMed]
  37. N. Nagdyman, T. Fleck, S. Schubert, P. Ewert, B. Peters, P. E. Lange, and H. Abdul-Khaliq, “Comparison between cerebral tissue oxygenation index measured by near-infrared spectroscopy and venous jugular bulb saturation in children,” Intensive Care Med.31(6), 846–850 (2005). [CrossRef] [PubMed]
  38. G. Buunk, J. G. van der Hoeven, and A. E. Meinders, “A comparison of near-infrared spectroscopy and jugular bulb oximetry in comatose patients resuscitated from a cardiac arrest,” Anaesthesia53(1), 13–19 (1998). [CrossRef] [PubMed]
  39. M. S. Ali, M. Harmer, R. S. Vaughan, J. A. Dunne, and I. P. Latto, “Spatially resolved spectroscopy (NIRO-300) does not agree with jugular bulb oxygen saturation in patients undergoing warm bypass surgery,” Can. J. Anaesth.48(5), 497–501 (2001). [CrossRef] [PubMed]
  40. C. D. Kurth, J. C. McCann, J. Wu, L. Miles, and A. W. Loepke, “Cerebral oxygen saturation-time threshold for hypoxic-ischemic injury in piglets,” Anesth. Analg.108(4), 1268–1277 (2009). [CrossRef] [PubMed]
  41. X. Hou, H. Ding, Y. Teng, C. Zhou, X. Tang, S. Li, and H. Ding, “Research on the relationship between brain anoxia at different regional oxygen saturations and brain damage using near-infrared spectroscopy,” Physiol. Meas.28(10), 1251–1265 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited