OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 11 — Nov. 1, 2011
  • pp: 3058–3071

Effects of probe geometry on transscleral diffuse optical spectroscopy

Pontus Svenmarker, Can T. Xu, Stefan Andersson-Engels, and Jørgen Krohn  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 11, pp. 3058-3071 (2011)
http://dx.doi.org/10.1364/BOE.2.003058


View Full Text Article

Enhanced HTML    Acrobat PDF (1417 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The purpose of this study was to investigate how the geometry of a fiber optic probe affects the transmission and reflection of light through the scleral eye wall. Two geometrical parameters of the fiber probe were investigated: the source-detector distance and the fiber protrusion, i.e. the length of the fiber extending from the flat surface of the fiber probe. For optimization of the fiber optic probe geometry, fluorescence stained choroidal tumor phantoms in ex vivo porcine eyes were measured with both diffuse reflectance- and laser-induced fluorescence spectroscopy. The strength of the fluorescence signal compared to the excitation signal was used as a measure for optimization. Intraocular pressure (IOP) and temperature were monitored to assess the impact of the probe on the eye. For visualizing any possible damage caused by the probe, the scleral surface was imaged with scanning electron microscopy after completion of the spectroscopic measurements. A source-detector distance of 5 mm with zero fiber protrusion was considered optimal in terms of spectroscopic contrast, however, a slight fiber protrusion of 0.5 mm is argued to be advantageous for clinical measurements. The study further indicates that transscleral spectroscopy can be safely performed in human eyes under in vivo conditions, without leading to an unacceptable IOP elevation, a significant rise in tissue temperature, or any visible damage to the scleral surface.

© 2011 OSA

OCIS Codes
(170.3890) Medical optics and biotechnology : Medical optics instrumentation
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(290.1990) Scattering : Diffusion
(300.6550) Spectroscopy : Spectroscopy, visible

ToC Category:
Noninvasive Optical Diagnostics

History
Original Manuscript: July 18, 2011
Revised Manuscript: September 18, 2011
Manuscript Accepted: September 18, 2011
Published: October 7, 2011

Citation
Pontus Svenmarker, Can T. Xu, Stefan Andersson-Engels, and Jørgen Krohn, "Effects of probe geometry on transscleral diffuse optical spectroscopy," Biomed. Opt. Express 2, 3058-3071 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-11-3058


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Q. Brown, K. Vishwanath, G. M. Palmer, and N. Ramanujam, “Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer,” Curr. Opinion Biotechnol.20, 119–131 (2009). [CrossRef]
  2. I. Rennie, “Things that go bump in the light. the differential diagnosis of posterior uveal melanomas,” Eye16, 325–346 (2002). [CrossRef] [PubMed]
  3. J. A. Shields, A. Mashayekhi, R. A. Seong, and C. l. Shields, “Pseudomelanomas of the posterior uveal tract: The 2006 Taylor R. Smith Lecture,” Retina25, 767–771 (2005). [CrossRef] [PubMed]
  4. J. Krohn, C. T. Xu, P. Svenmarker, D. Khoptyar, and S. Andersson-Engels, “Transscleral visible/near-infrared spectroscopy for quantitative assessment of melanin in a uveal melanoma phantom of ex vivo porcine eyes,” Exp. Eye Res.90, 330–336 (2010). [CrossRef]
  5. C. T. Xu, P. Svenmarker, S. Andersson-Engels, and J. Krohn, “Transscleral visible/near-infrared spectroscopy for quantitative assessment of haemoglobin in experimental choroidal tumours,” Acta Ophthalmol., http://onlinelibrary.wiley.com/doi/10.1111/j.1755-3768.2010.02037.x/full . [PubMed]
  6. S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt.13, 041302 (2008). [CrossRef] [PubMed]
  7. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73, 076701 (2010). [CrossRef]
  8. M. S. Patterson, S. Andersson-Engels, B. C. Wilson, and E. K. Osei, “Absorption-spectroscopy in tissue-simulating materials - a theoretical and experimental-study of photon paths,” Appl. Opt.34, 22–30 (1995). [CrossRef] [PubMed]
  9. T. J. Pfefer, L. S. Matchette, A. M. Ross, and M.N. Ediger, “Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design,” Opt. Lett.28,120–122 (2003). [CrossRef] [PubMed]
  10. C. F. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation” J. Biomed. Opt.8, 237–247 (2003). [CrossRef] [PubMed]
  11. M. Hammer, A. Roggan, D. Schweitzer, and G. Mller, “Optical properties of ocular fundus tissues - an in vitro study using the double-integrating-sphere technique and inverse monte carlo simulation,” Phys. Med. Biol.40, 963–978 (1995). [CrossRef] [PubMed]
  12. M. Maus, Principles and Practice of Ophthalmology: Clinical Practice (W.B. Saunders, 1994), vol. 3.
  13. I. Schoemaker, P. P. W. Hoefnagel, T. J. Mastenbroek, C. F. Kolff, S. Schutte, F. C. T. van der Helm, S. J. Picken, A. F. C. Gerritsen, P. A. Wielopolski, H. Spekreijse, and H. J. Simonsz, “Elasticity, viscosity, and deformation of orbital fat,” Investigative Ophthalmol. Visual Sci.47, 4819–4826 (2006). [CrossRef]
  14. H. Hh and M. Schwanengel, “Continuous measurement of intraocular pressure by the codman micro sensor for several days - a case report,” Klin. Monatsbl. Augenheilkd.215, 186–196 (1999).
  15. G. Zijlstra, Willem, A. Buursma, and O. W. van Assendelft, Visible and Near Infrared Absorption Spectra of Human and Animal Haemoglobin - determination and application (VSP, 2000). [PubMed]
  16. K. Palmer and D. Williams, “Optical-properties of water in near-infrared,” J. Opt. Soc. Am.64, 1107–1110 (1974). [CrossRef]
  17. N. Kollias and A. Baqer, “Spectroscopic characteristics of human melanin invivo,” J. Investigative Dermatol.85, 38–42 (1985). [CrossRef]
  18. R. Marchesini, A. Bono, and M. Carrara, “In vivo characterization of melanin in melanocytic lesions: spectroscopic study on 1671 pigmented skin lesions,” J. Biomed. Opt.14 (2009). [CrossRef] [PubMed]
  19. B. Cameron, N. Saffra, and M. Strominger, “Laser in situ keratomileusis-induced optic neuropathy,” Ophthalmology108, 660–665 (2001). [CrossRef] [PubMed]
  20. Y. Ti and W.-C. Lin, “Effects of probe contact pressure on in vivo optical spectroscopy,” Opt. Express16, 4250–4262 (2008). [CrossRef] [PubMed]
  21. K. C. Y. Chan, A. Poostchi, T. Wong, E. A. Insult, N. Sachdev, and A. P. Wells, “Visual field changes after transient elevation of intraocular pressure in eyes with and without glaucoma,” Ophthalmology115, 667–672 (2008). [CrossRef]
  22. J. H. Prince, Anatomy and histology of the eye and orbit in domestic animals (C. C. Thomas, Springfield, Ill., 1960).
  23. T. Olsen, S. Aaberg, D. Geroski, and H. Edelhauser, “Human sclera: thickness and surface area,” Am. J. Ophthalmol.125, 237–241 (1998). [CrossRef] [PubMed]
  24. R. E. Norman, J. G. Flanagan, S. M. K. Rausch, I. A. Sigal, I. Tertinegg, A. Eilaghi, S. Portnoy, J. G. Sled, and C. R. Ethier, “Dimensions of the human sclera: thickness measurement and regional changes with axial length,” Exp. Eye Res.90, 277–284 (2010). [CrossRef]
  25. T. Olsen, S. Sanderson, X. Feng, and W. Hubbard, “Porcine sclera: thickness and surface area,” Investigative Ophthalmol. Visual Sci.43, 2529–2532 (2002).
  26. J. Krohn and T. Bertelsen, “Light microscopy of uveoscleral drainage routes after gelatine injections into the suprachoroidal space,” Acta Ophthalmol. Scan.76, 521–527 (1998). [CrossRef]
  27. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry,” J. Biomed. Opt.11 (2006). [CrossRef] [PubMed]
  28. J. Swartling, J. Dam, and S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt.42, 4612–4620 (2003). [CrossRef] [PubMed]
  29. J. Krohn, O. R. Monge, T. N. Skorpen, S. J. Mørk, and O. Dahl, “Posterior uveal melanoma treated with I-125 brachytherapy or primary enucleation,” Eye221398–1403 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited