OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 11 — Nov. 1, 2011
  • pp: 3072–3078

Thermal intravascular photoacoustic imaging

Bo Wang and Stanislav Emelianov  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 11, pp. 3072-3078 (2011)
http://dx.doi.org/10.1364/BOE.2.003072


View Full Text Article

Enhanced HTML    Acrobat PDF (1132 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Intravascular photoacoustics (IVPA)—a minimally invasive imaging technique with contrast related to optical absorption properties of tissue, can be used to visualize atherosclerotic plaques. However, the amplitude of photoacoustic signals is also related to a temperature dependent, tissue specific parameter—the Grüneisen parameter. Therefore, photoacoustic signals measured at different temperatures may reveal information about tissue composition. In this study, thermal IVPA (tIVPA) imaging was introduced. The imaging studies were performed using an ex vivo atherosclerotic rabbit aorta. Temperature dependent photoacoustic responses from lipid in plaques and lipid in periadventitial tissue were different, thus allowing tIVPA images to delineate the location of lipid-rich plaques. The results indicate that tIVPA imaging has a potential to characterize tissue composition in atherosclerotic vessels.

© 2011 OSA

OCIS Codes
(110.5120) Imaging systems : Photoacoustic imaging
(110.7170) Imaging systems : Ultrasound
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.6935) Medical optics and biotechnology : Tissue characterization

ToC Category:
Photoacoustic Imaging and Spectroscopy

History
Original Manuscript: August 2, 2011
Revised Manuscript: September 30, 2011
Manuscript Accepted: October 3, 2011
Published: October 13, 2011

Citation
Bo Wang and Stanislav Emelianov, "Thermal intravascular photoacoustic imaging," Biomed. Opt. Express 2, 3072-3078 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-11-3072


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Virmani, A. P. Burke, A. Farb, and F. D. Kolodgie, “Pathology of the unstable plaque,” Prog. Cardiovasc. Dis.44(5), 349–356 (2002). [CrossRef] [PubMed]
  2. D. Steinberg, “Thematic review series: the pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy: part I,” J. Lipid Res.45(9), 1583–1593 (2004). [CrossRef] [PubMed]
  3. E. Falk, “Pathogenesis of atherosclerosis,” J. Am. Coll. Cardiol.47(8Suppl), C7–C12 (2006). [CrossRef] [PubMed]
  4. S. E. Nissen and P. Yock, “Intravascular ultrasound: novel pathophysiological insights and current clinical applications,” Circulation103(4), 604–616 (2001). [PubMed]
  5. C. L. de Korte, M. J. Sierevogel, F. Mastik, C. Strijder, J. A. Schaar, E. Velema, G. Pasterkamp, P. W. Serruys, and A. F. W. van der Steen, “Identification of atherosclerotic plaque components with intravascular ultrasound elastography in vivo: a Yucatan pig study,” Circulation105(14), 1627–1630 (2002). [CrossRef] [PubMed]
  6. A. Nair, B. D. Kuban, E. M. Tuzcu, P. Schoenhagen, S. E. Nissen, and D. G. Vince, “Coronary plaque classification with intravascular ultrasound radiofrequency data analysis,” Circulation106(17), 2200–2206 (2002). [CrossRef] [PubMed]
  7. Y. Shi, R. S. Witte, and M. O’Donnell, “Identification of vulnerable atherosclerotic plaque using IVUS-based thermal strain imaging,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control52(5), 844–850 (2005). [CrossRef] [PubMed]
  8. S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control54(5), 978–986 (2007). [CrossRef] [PubMed]
  9. P. C. Beard and T. N. Mills, “Characterization of post mortem arterial tissue using time-resolved photoacoustic spectroscopy at 436, 461 and 532 nm,” Phys. Med. Biol.42(1), 177–198 (1997). [CrossRef] [PubMed]
  10. Q. X. Chen, A. Davies, R. J. Dewhurst, and P. A. Payne, “Photo-acoustic probe for intra-arterial imaging and therapy,” Electron. Lett.29(18), 1632–1633 (1993). [CrossRef]
  11. B. Wang, E. Yantsen, T. Larson, A. B. Karpiouk, S. Sethuraman, J. L. Su, K. Sokolov, and S. Y. Emelianov, “Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques,” Nano Lett.9(6), 2212–2217 (2009). [CrossRef] [PubMed]
  12. S. Sethuraman, J. H. Amirian, S. H. Litovsky, R. W. Smalling, and S. Y. Emelianov, “Spectroscopic intravascular photoacoustic imaging to differentiate atherosclerotic plaques,” Opt. Express16(5), 3362–3367 (2008). [CrossRef] [PubMed]
  13. T. J. Allen and P. C. Beard, “Photoacoustic characterisation of vascular tissue at NIR wavelengths,” Proc. SPIE7177, 71770A, 71770A-9 (2009). [CrossRef]
  14. B. Wang, J. L. Su, J. Amirian, S. H. Litovsky, R. Smalling, and S. Emelianov, “Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging,” Opt. Express18(5), 4889–4897 (2010). [CrossRef] [PubMed]
  15. K. Jansen, A. F. W. van der Steen, H. M. M. van Beusekom, J. W. Oosterhuis, and G. van Soest, “Intravascular photoacoustic imaging of human coronary atherosclerosis,” Opt. Lett.36(5), 597–599 (2011). [CrossRef] [PubMed]
  16. J. M. Sun and B. S. Gerstman, “Photoacoustic generation for a spherical absorber with impedance mismatch with the surrounding media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics59(5 Pt B), 5772–5789 (1999). [CrossRef] [PubMed]
  17. I. V. Larina, K. V. Larin, and R. O. Esenaliev, “Real-time optoacoustic monitoring of temperature in tissues,” J. Phys. D Appl. Phys.38(15), 2633–2639 (2005). [CrossRef]
  18. J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt.13(3), 034024 (2008). [CrossRef] [PubMed]
  19. M. Shiomi and T. Ito, “The Watanabe heritable hyperlipidemic (WHHL) rabbit, its characteristics and history of development: a tribute to the late Dr. Yoshio Watanabe,” Atherosclerosis207(1), 1–7 (2009). [CrossRef] [PubMed]
  20. T. Kobayashi, T. Ito, and M. Shiomi, “Roles of the WHHL rabbit in translational research on hypercholesterolemia and cardiovascular diseases,” J. Biomed. Biotechnol.2011, 406473 (2011). [CrossRef] [PubMed]
  21. R. J. Havel, T. Kita, L. Kotite, J. P. Kane, R. L. Hamilton, J. L. Goldstein, and M. S. Brown, “Concentration and composition of lipoproteins in blood plasma of the WHHL rabbit. An animal model of human familial hypercholesterolemia,” Arteriosclerosis2(6), 467–474 (1982). [CrossRef] [PubMed]
  22. C. L. Tsai, J. C. Chen, and W. J. Wang, “Near-infrared absorption property of biological soft tissue constituents,” J. Med. Biol. Eng.21, 7–14 (2001).
  23. D. E. Vance and J. E. Vance, Biochemistry of Lipids, Lipoproteins, and Membranes, New Comprehensive Biochemistry (Elsevier, 1996).
  24. D. Vela, L. M. Buja, M. Madjid, A. Burke, M. Naghavi, J. T. Willerson, S. W. Casscells, and S. Litovsky, “The role of periadventitial fat in atherosclerosis,” Arch. Pathol. Lab. Med.131(3), 481–487 (2007). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited