OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 11 — Nov. 1, 2011
  • pp: 3079–3093

Measurement of cerebral microvascular compliance in a model of atherosclerosis with optical coherence tomography

E. Baraghis, V. Bolduc, J. Lefebvre, V. J. Srinivasan, C. Boudoux, E. Thorin, and F. Lesage  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 11, pp. 3079-3093 (2011)
http://dx.doi.org/10.1364/BOE.2.003079


View Full Text Article

Enhanced HTML    Acrobat PDF (1621 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical coherence tomography (OCT) has recently been used to produce 3D angiography of microvasculature and blood flow maps of large vessels in the rodent brain in-vivo. However, use of this optical method for the study of cerebrovascular disease has not been fully explored. Recent developments in neurodegenerative diseases has linked common cardiovascular risk factors to neurodegenerative risk factors hinting at a vascular hypothesis for the development of the latter. Tools for studying cerebral blood flow and the myogenic tone of cerebral vasculature have thus far been either highly invasive or required ex-vivo preparations therefore not preserving the delicate in-vivo conditions. We propose a novel technique for reconstructing the flow profile over a single cardiac cycle in order to evaluate flow pulsatility and vessel compliance. A vascular model is used to simulate changes in vascular compliance and interpret OCT results. Comparison between atherosclerotic and wild type mice show a trend towards increased compliance in the smaller arterioles of the brain (diameter < 80μm) in the disease model. These results are consistent with previously published ex-vivo work confirming the ability of OCT to investigate vascular dysfunction.

© 2011 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography

ToC Category:
Optical Coherence Tomography

History
Original Manuscript: August 8, 2011
Revised Manuscript: October 4, 2011
Manuscript Accepted: October 4, 2011
Published: October 13, 2011

Citation
E. Baraghis, V. Bolduc, J. Lefebvre, V. J. Srinivasan, C. Boudoux, E. Thorin, and F. Lesage, "Measurement of cerebral microvascular compliance in a model of atherosclerosis with optical coherence tomography," Biomed. Opt. Express 2, 3079-3093 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-11-3079


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. de la Torre, “Is alzheimer’s disease a neurodegenerative or a vascular disorder? data, dogma, and dialectics,” Lancet Neurol.3, 184–190 (2004). [CrossRef] [PubMed]
  2. L. Hebert, P. Scherr, J. Bienias, D. Bennett, and D. Evans, “Alzheimer disease in the us population: prevalence estimates using the 2000 census,” Arch. Neurol.60, 1119–1122 (2003). [CrossRef] [PubMed]
  3. C. Iadecola, “Neurovascular regulation in the normal brain and in alzheimer’s disease,” Nat. Rev. Neurosci.5, 347–360 (2004). [CrossRef] [PubMed]
  4. E. Helzner, J. Luchsinger, N. Scarmeas, S. Cosentino, A. Brickman, M. Glymour, and Y. Stern, “Contribution of vascular risk factors to the progression in alzheimer disease,” Arch. Neurol.66, 343 (2009). [CrossRef] [PubMed]
  5. Q. Fang, S. Sakadzic, L. Ruvinskaya, A. Devor, A. M. Dale, and D. A. Boas, “Oxygen advection and diffusion in a three-dimensional vascular anatomical network,” Opt. Express16, 17530–17541 (2008). [CrossRef] [PubMed]
  6. C. Schaffer, B. Friedman, N. Nishimura, L. Schroeder, P. Tsai, F. Ebner, P. Lyden, and D. Kleinfeld, “Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion,” PLoS Biol.4, e22 (2006). [CrossRef]
  7. T. Murphy, P. Li, K. Betts, and R. Liu, “Two-photon imaging of stroke onset in vivo reveals that nmda-receptor independent ischemic depolarization is the major cause of rapid reversible damage to dendrites and spines,” J. Neurosci.28, 1756–1772 (2008). [CrossRef]
  8. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express15, 4083–4097 (2007). [CrossRef] [PubMed]
  9. B. Vakoc, R. Lanning, J. Tyrrell, T. Padera, L. Bartlett, T. Stylianopoulos, L. Munn, G. Tearney, D. Fukumura, R. Jain, and , “Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging,” Nat. Med.15, 1219–1223 (2009). [CrossRef] [PubMed]
  10. V. J. Srinivasan, J. Y. Jiang, M. A. Yaseen, H. Radhakrishnan, W. Wu, S. Barry, A. E. Cable, and D. A. Boas, “Rapid volumetric angiography of cortical microvasculature with optical coherence tomography,” Opt. Lett.35, 43–45 (2010). [CrossRef] [PubMed]
  11. Y. Jia, L. An, and R. Wang, “Label-free and highly sensitive optical imaging of detailed microcirculation within meninges and cortex in mice with the cranium left intact,” J. Biomed. Opt.15, 030510 (2010). [CrossRef] [PubMed]
  12. V. J. Srinivasan, S. Sakadžić, I. Gorczynska, S. Ruvinskaya, W. Wu, J. G. Fujimoto, and D. A. Boas, “Quantitative cerebral blood flow with optical coherence tomography,” Opt. Express18, 2477–2494 (2010). [CrossRef] [PubMed]
  13. N. van Popele, D. Grobbee, M. Bots, R. Asmar, J. Topouchian, R. Reneman, A. Hoeks, D. van der Kuip, A. Hofman, and J. Witteman, “Association between arterial stiffness and atherosclerosis: the rotterdam study,” Stroke32, 454–460 (2001). [CrossRef] [PubMed]
  14. V. Bolduc, A. Drouin, M. Gillis, N. Duquette, N. Thorin-Trescases, I. Frayne-Robillard, C. Des Rosiers, J. Tardif, and E. Thorin, “Heart rate-associated mechanical stress impairs carotid but not cerebral artery compliance in dyslipidemic atherosclerotic mice,” Am. J. Physiol. Heart Circ. Physiol. 10.1152/ajpheart.00706.2011 (Sept.2011). [CrossRef] [PubMed]
  15. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, “Ultrahigh-resolution, high-speed, fourier domain optical coherence tomography and methods for dispersion compensation,” Opt. Express12, 2404–2422 (2004). [CrossRef] [PubMed]
  16. H. Ren, T. Sun, D. MacDonald, M. Cobb, and X. Li, “Real-time in vivo blood-flow imaging by moving-scatterer-sensitive spectral-domain optical doppler tomography,” Opt. Lett.31, 927–929 (2006). [CrossRef] [PubMed]
  17. C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason.32, 458–464 (1985).
  18. D. Boas, S. Jones, A. Devor, T. Huppert, and A. Dale, “A vascular anatomical network model of the spatio-temporal response to brain activation,” Neuroimage40, 1116–1129 (2008). [CrossRef] [PubMed]
  19. A. Pries, D. Neuhaus, and P. Gaehtgens, “Blood viscosity in tube flow: dependence on diameter and hematocrit,” Am. J. Physiol. Heart Circ. Physiol.263, H1770–H1778 (1992).
  20. A. Drouin, V. Bolduc, N. Thorin-Trescases, É. Bélanger, P. Fernandes, E. Baraghis, F. Lesage, M. Gillis, L. Villeneuve, E. Hamel, G. Ferland, and E. Thorin, “Catechin treatment improves cerebrovascular flow-mediated dilation and learning abilities in atherosclerotic mice,” Am. J. Physiol. Heart Circ. Physiol.300, H1032–H1043 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited