OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 11 — Nov. 1, 2011
  • pp: 3109–3118

In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography

Peng Li, Lin An, Roberto Reif, Tueng T. Shen, Murray Johnstone, and Ruikang K Wang  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 11, pp. 3109-3118 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1562 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The corneo-scleral limbus contains several biological components, which are important constituents for understanding, diagnosing and managing several ocular pathologies, such as glaucoma and corneal abnormalities. An anterior segment optical coherence tomography (AS-OCT) system integrated with optical microangiography (OMAG) is used in this study to non-invasively visualize the three-dimensional microstructural and microvascular properties of the limbal region. Advantages include first the ability to correct optical distortion of microstructural images enabling quantification of relationships in the anterior chamber angle. Second, microvascular images enable the visualization of the microcirculation in the limbal area without the use of exogenous contrast agents. Third, by combining the microstructural and microvascular information, the aqueous outflow pathway can be identified. The proposed AS-OCT can serve as a useful tool for ophthalmological research to determine normal and pathologic changes in the outflow system. As a clinical tool it has the potential to detect early aqueous outflow system abnormalities that lead to the pressure elevation in glaucoma. Recent surgical innovations and their implementations also rely on an assessment of outflow system structure and function, which can be revealed by AS-OCT.

© 2011 OSA

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4470) Medical optics and biotechnology : Ophthalmology
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Ophthalmology Applications

Original Manuscript: September 7, 2011
Revised Manuscript: October 10, 2011
Manuscript Accepted: October 12, 2011
Published: October 18, 2011

Peng Li, Lin An, Roberto Reif, Tueng T. Shen, Murray Johnstone, and Ruikang K Wang, "In vivo microstructural and microvascular imaging of the human corneo-scleral limbus using optical coherence tomography," Biomed. Opt. Express 2, 3109-3118 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. J. Hogan, J. A. Alvarado, and J. E. Weddell, Histology of the Human Eye; an Atlas and Textbook (Saunders, 1971), pp. xiii
  2. E. B. Papas, “The limbal vasculature,” Cont. Lens Anterior Eye26(2), 71–76 (2003). [CrossRef] [PubMed]
  3. Y. Hayashi, M. K. Call, C. Y. Liu, M. Hayashi, G. Babcock, Y. Ohashi, and W. W. Kao, “Monoallelic expression of Krt12 gene during corneal-type epithelium differentiation of limbal stem cells,” Invest. Ophthalmol. Vis. Sci.51(9), 4562–4568 (2010). [CrossRef] [PubMed]
  4. H. S. Dua and A. Azuara-Blanco, “Limbal stem cells of the corneal epithelium,” Surv. Ophthalmol.44(5), 415–425 (2000). [CrossRef] [PubMed]
  5. M. F. Goldberg and A. J. Bron, “Limbal palisades of Vogt,” Trans. Am. Ophthalmol. Soc.80, 155–171 (1982). [PubMed]
  6. M. Johnstone, E. Martin, and A. Jamil, “Pulsatile flow into the aqueous veins: manifestations in normal and glaucomatous eyes,” Exp. Eye Res.92(5), 318–327 (2011). [CrossRef] [PubMed]
  7. L. Kagemann, G. Wollstein, H. Ishikawa, I. A. Sigal, L. S. Folio, J. Xu, H. Gong, and J. S. Schuman, “3D visualization of aqueous humor outflow structures in-situ in humans,” Exp. Eye Res.in press. [PubMed]
  8. M. Müller, H. Hoerauf, G. Geerling, S. Pape, C. Winter, G. Hüttmann, R. Birngruber, and H. Laqua, “Filtering bleb evaluation with slit-lamp-adapted 1310-nm optical coherence tomography,” Curr. Eye Res.31(11), 909–915 (2006). [CrossRef] [PubMed]
  9. C. K. Leung, D. W. Yick, Y. Y. Kwong, F. C. Li, D. Y. Leung, S. Mohamed, C. C. Tham, C. Chung-chai, and D. S. Lam, “Analysis of bleb morphology after trabeculectomy with Visante anterior segment optical coherence tomography,” Br. J. Ophthalmol.91(3), 340–344 (2007). [CrossRef] [PubMed]
  10. M. Singh, T. Aung, M. C. Aquino, and P. T. Chew, “Utility of bleb imaging with anterior segment optical coherence tomography in clinical decision-making after trabeculectomy,” J. Glaucoma18(6), 492–495 (2009). [CrossRef] [PubMed]
  11. K. Hirooka, M. Takagishi, T. Baba, and F. Shiraga, “Correlation between optical coherence tomography scan and histological specimen of a filtering bleb,” Acta Ophthalmol. (Copenh.)88(2), e50–e51 (2010). [CrossRef] [PubMed]
  12. J. Ren, H. K. Gille, J. Wu, and C. Yang, “Ex vivo optical coherence tomography imaging of collector channels with a scanning endoscopic probe,” Invest. Ophthalmol. Vis. Sci.52(7), 3921–3925 (2011). [CrossRef] [PubMed]
  13. Y. Fernández-Barrientos, J. García-Feijoó, J. M. Martínez-de-la-Casa, L. E. Pablo, C. Fernández-Pérez, and J. García Sánchez, “Fluorophotometric study of the effect of the glaukos trabecular microbypass stent on aqueous humor dynamics,” Invest. Ophthalmol. Vis. Sci.51(7), 3327–3332 (2010). [CrossRef] [PubMed]
  14. M. C. Grieshaber, A. Pienaar, J. Olivier, and R. Stegmann, “Canaloplasty for primary open-angle glaucoma: long-term outcome,” Br. J. Ophthalmol.94(11), 1478–1482 (2010). [CrossRef] [PubMed]
  15. M. C. Grieshaber, A. Pienaar, J. Olivier, and R. Stegmann, “Clinical evaluation of the aqueous outflow system in primary open-angle glaucoma for canaloplasty,” Invest. Ophthalmol. Vis. Sci.51(3), 1498–1504 (2010). [CrossRef] [PubMed]
  16. J. A. McWhae and A. C. Crichton, “The use of ultrasound biomicroscopy following trabeculectomy,” Can. J. Ophthalmol.31(4), 187–191 (1996). [PubMed]
  17. J. M. Liebmann, “Ultrasound biomicroscopy of the anterior segment,” J. Glaucoma10(5Suppl 1), S53–S55 (2001). [CrossRef] [PubMed]
  18. A. Kobayashi and K. Sugiyama, “In vivo corneal confocal microscopic findings of palisades of Vogt and its underlying limbal stroma,” Cornea24(4), 435–437 (2005). [CrossRef] [PubMed]
  19. D. V. Patel, T. Sherwin, and C. N. McGhee, “Laser scanning in vivo confocal microscopy of the normal human corneoscleral limbus,” Invest. Ophthalmol. Vis. Sci.47(7), 2823–2827 (2006). [CrossRef] [PubMed]
  20. J. A. Izatt, M. R. Hee, E. A. Swanson, C. P. Lin, D. Huang, J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, “Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography,” Arch. Ophthalmol.112(12), 1584–1589 (1994). [PubMed]
  21. S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol.119(8), 1179–1185 (2001). [PubMed]
  22. S. Asrani, M. Sarunic, C. Santiago, and J. Izatt, “Detailed visualization of the anterior segment using fourier-domain optical coherence tomography,” Arch. Ophthalmol.126(6), 765–771 (2008). [CrossRef] [PubMed]
  23. L. Kagemann, G. Wollstein, H. Ishikawa, R. A. Bilonick, P. M. Brennen, L. S. Folio, M. L. Gabriele, and J. S. Schuman, “Identification and assessment of Schlemm’s canal by spectral-domain optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.51(8), 4054–4059 (2010). [CrossRef] [PubMed]
  24. K. Bizheva, N. Hutchings, L. Sorbara, A. A. Moayed, and T. Simpson, “In vivo volumetric imaging of the human corneo-scleral limbus with spectral domain OCT,” Biomed. Opt. Express2(7), 1794–1802 (2011). [CrossRef] [PubMed]
  25. A. Tao, J. Wang, Q. Chen, M. Shen, F. Lu, S. R. Dubovy, and M. A. Shousha, “Topographic thickness of Bowman’s layer determined by ultra-high resolution spectral domain-optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.52(6), 3901–3907 (2011). [CrossRef] [PubMed]
  26. Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt.15(6), 061705 (2010). [CrossRef] [PubMed]
  27. G. Savini, M. Zanini, and P. Barboni, “Filtering blebs imaging by optical coherence tomography,” Clin. Experiment. Ophthalmol.33(5), 483–489 (2005). [CrossRef] [PubMed]
  28. R. K. Wang and L. An, “Multifunctional imaging of human retina and choroid with 1050-nm spectral domain optical coherence tomography at 92-kHz line scan rate,” J. Biomed. Opt.16(5), 050503 (2011). [CrossRef] [PubMed]
  29. R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett.35(9), 1467–1469 (2010). [CrossRef] [PubMed]
  30. R. K. Wang, S. L. Jacques, Z. Ma, S. Hurst, S. R. Hanson, and A. Gruber, “Three dimensional optical angiography,” Opt. Express15(7), 4083–4097 (2007). [CrossRef] [PubMed]
  31. R. K. Wang and S. Hurst, “Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 mum wavelength,” Opt. Express15(18), 11402–11412 (2007). [CrossRef] [PubMed]
  32. A. N. S. Institute, American National Standard for Safe Use of Lasers: ANSI Z136.1–2000 (Laser Institute of America, 2000).
  33. S. Ortiz, D. Siedlecki, I. Grulkowski, L. Remon, D. Pascual, M. Wojtkowski, and S. Marcos, “Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging,” Opt. Express18(3), 2782–2796 (2010). [CrossRef] [PubMed]
  34. A. Podoleanu, I. Charalambous, L. Plesea, A. Dogariu, and R. Rosen, “Correction of distortions in optical coherence tomography imaging of the eye,” Phys. Med. Biol.49(7), 1277–1294 (2004). [CrossRef] [PubMed]
  35. V. Westphal, A. Rollins, S. Radhakrishnan, and J. Izatt, “Correction of geometric and refractive image distortions in optical coherence tomography applying Fermat’s principle,” Opt. Express10(9), 397–404 (2002). [PubMed]
  36. D. J. J. Park and J. W. Karesh, Topographic Anatomy of the Eye: an Overview, Duane's Clinical Ophthalmology on CD-ROM (Lippincott Williams & Wilkins, 2006).
  37. C. K. Leung and R. N. Weinreb, “Anterior chamber angle imaging with optical coherence tomography,” Eye (Lond.)25(3), 261–267 (2011). [CrossRef] [PubMed]
  38. M. Doors, T. T. Berendschot, J. de Brabander, C. A. Webers, and R. M. Nuijts, “Value of optical coherence tomography for anterior segment surgery,” J. Cataract Refract. Surg.36(7), 1213–1229 (2010). [CrossRef] [PubMed]
  39. S. Radhakrishnan, J. See, S. D. Smith, W. P. Nolan, Z. Ce, D. S. Friedman, D. Huang, Y. Li, T. Aung, and P. T. Chew, “Reproducibility of anterior chamber angle measurements obtained with anterior segment optical coherence tomography,” Invest. Ophthalmol. Vis. Sci.48(8), 3683–3688 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited