OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 11 — Nov. 1, 2011
  • pp: 3135–3149

Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy

Rodrigo Aviles-Espinosa, Jordi Andilla, Rafael Porcar-Guezenec, Omar E. Olarte, Marta Nieto, Xavier Levecq, David Artigas, and Pablo Loza-Alvarez  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 11, pp. 3135-3149 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (2916 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate that sample induced aberrations can be measured in a nonlinear microscope. This uses the fact that two-photon excited fluorescence naturally produces a localized point source inside the sample: the nonlinear guide-star (NL-GS). The wavefront emitted from the NL-GS can then be recorded using a Shack-Hartmann sensor. Compensation of the recorded sample aberrations is performed by the deformable mirror in a single-step. This technique is applied to fixed and in vivo biological samples, showing, in some cases, more than one order of magnitude improvement in the total collected signal intensity.

© 2011 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(190.4180) Nonlinear optics : Multiphoton processes
(220.1000) Optical design and fabrication : Aberration compensation
(180.4315) Microscopy : Nonlinear microscopy
(220.1080) Optical design and fabrication : Active or adaptive optics

ToC Category:

Original Manuscript: September 7, 2011
Revised Manuscript: October 17, 2011
Manuscript Accepted: October 20, 2011
Published: October 25, 2011

Rodrigo Aviles-Espinosa, Jordi Andilla, Rafael Porcar-Guezenec, Omar E. Olarte, Marta Nieto, Xavier Levecq, David Artigas, and Pablo Loza-Alvarez, "Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy," Biomed. Opt. Express 2, 3135-3149 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990). [CrossRef] [PubMed]
  2. P. T. C. So, C. Y. Dong, B. R. Masters, and K. M. Berland, “Two-photon excitation fluorescence microscopy,” Annu. Rev. Biomed. Eng.2(1), 399–429 (2000). [CrossRef] [PubMed]
  3. M. J. Booth and T. Wilson, “Refractive-index-mismatch induced aberrations in single-photon and two-photon microscopy and the use of aberration correction,” J. Biomed. Opt.6(3), 266–272 (2001). [CrossRef] [PubMed]
  4. D. Ganic, X. S. Gan, and M. Gu, “Reduced effects of spherical aberration on penetration depth under two-photon excitation,” Appl. Opt.39(22), 3945–3947 (2000). [CrossRef] [PubMed]
  5. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods2(12), 932–940 (2005). [CrossRef] [PubMed]
  6. M. A. A. Neil, R. Juskaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc.200(2), 105–108 (2000). [CrossRef] [PubMed]
  7. D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett.34(16), 2495–2497 (2009). [CrossRef] [PubMed]
  8. J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt.15(6), 066004 (2010). [CrossRef] [PubMed]
  9. Z. Kam, P. Kner, D. Agard, and J. W. Sedat, “Modelling the application of adaptive optics to wide-field microscope live imaging,” J. Microsc.226(1), 33–42 (2007). [CrossRef] [PubMed]
  10. M. J. Booth, M. Schwertner, and T. Wilson, “Specimen-induced aberrations and adaptive optics for microscopy,” Proc. SPIE5894, 26–34 (2005).
  11. J. W. Cha, J. Ballesta, and P. T. C. So, “Shack-Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy,” J. Biomed. Opt.15(4), 046022 (2010). [CrossRef] [PubMed]
  12. D. Debarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express15(13), 8176–8190 (2007). [CrossRef] [PubMed]
  13. M. J. Booth, “Wave front sensor-less adaptive optics: a model-based approach using sphere packings,” Opt. Express14(4), 1339–1352 (2006). [CrossRef] [PubMed]
  14. P. N. Marsh, D. Burns, and J. M. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express11(10), 1123–1130 (2003). [CrossRef] [PubMed]
  15. W. Lubeigt, S. P. Poland, G. J. Valentine, A. J. Wright, J. M. Girkin, and D. Burns, “Search-based active optic systems for aberration correction in time-independent applications,” Appl. Opt.49(3), 307–314 (2010). [CrossRef] [PubMed]
  16. J. M. Girkin, J. Vijverberg, M. Orazio, S. Poland, and A. J. Wright, “Adaptive optics in confocal and two-photon microscopy of rat brain: a single correction per optical section,” Proc. SPIE6442, 64420T, 64420T-7 (2007). [CrossRef]
  17. A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Tech.67(1), 36–44 (2005). [CrossRef] [PubMed]
  18. P. Kner and Z. Kam, “Adaptive optics takes tissue imaging to the next level,” BioOpt. World1, 32–34 (2008).
  19. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. U.S.A.103(46), 17137–17142 (2006). [CrossRef] [PubMed]
  20. M. J. Booth, “Adaptive optics in microscopy,” Philos. Transact. A Math. Phys. Eng. Sci.365(1861), 2829–2843 (2007). [CrossRef] [PubMed]
  21. F. Roddier, Adaptive Optics in Astronomy (Cambridge University Press, 1999), Chap. 2.
  22. O. Azucena, J. Crest, J. A. Cao, W. Sullivan, P. Kner, D. Gavel, D. Dillon, S. Olivier, and J. Kubby, “Wavefront aberration measurements and corrections through thick tissue using fluorescent microsphere reference beacons,” Opt. Express18(16), 17521–17532 (2010). [CrossRef] [PubMed]
  23. G. Cormack, P. Loza-Alvarez, L. Sarrado, S. Tomas, I. Amat-Roldan, L. Torner, D. Artigas, J. Guitart, J. Pera, and J. Ros, “Lost writing uncovered by laser two-photon fluorescence provides a terminus post quem for Roman colonization of Hispania Citerior,” J. Archaeol. Sci.34(10), 1594–1600 (2007). [CrossRef]
  24. R. Aviles-Espinosa, G. Filippidis, C. Hamilton, G. Malcolm, K. J. Weingarten, T. Südmeyer, Y. Barbarin, U. Keller, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “Compact ultrafast semiconductor disk laser: targeting GFP based nonlinear applications in living organisms,” Biomed. Opt. Express2(4), 739–747 (2011). [CrossRef] [PubMed]
  25. R. Kerr, V. Lev-Ram, G. Baird, P. Vincent, R. Y. Tsien, and W. R. Schafer, “Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans,” Neuron26(3), 583–594 (2000). [CrossRef] [PubMed]
  26. H. Tabata and K. Nakajima, “Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex,” Neuroscience103(4), 865–872 (2001). [CrossRef] [PubMed]
  27. O. Azucena, J. Crest, S. Kotadia, W. Sullivan, X. Tao, M. Reinig, D. Gavel, S. Olivier, and J. Kubby, “Adaptive optics wide-field microscopy using direct wavefront sensing,” Opt. Lett.36(6), 825–827 (2011). [CrossRef] [PubMed]
  28. M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc.192(2), 90–98 (1998). [CrossRef]
  29. V. A. Hovhannisyan, P. J. Su, and C. Y. Dong, “Characterization of optical-aberration-induced lateral and axial image inhomogeneity in multiphoton microscopy,” J. Biomed. Opt.13(4), 044023 (2008). [CrossRef] [PubMed]
  30. E. Theofanidou, L. Wilson, W. J. Hossack, and J. Arlt, “Spherical aberration correction for optical tweezers,” Opt. Commun.236(1-3), 145–150 (2004). [CrossRef]
  31. C. Y. Dong, B. Yu, P. D. Kaplan, and P. T. C. So, “Performances of high numerical aperture water and oil immersion objective in deep-tissue, multi-photon microscopic imaging of excised human skin,” Microsc. Res. Tech.63(1), 81–86 (2004). [CrossRef] [PubMed]
  32. X. Tao, B. Fernandez, O. Azucena, M. Fu, D. Garcia, Y. Zuo, D. C. Chen, and J. Kubby, “Adaptive optics confocal microscopy using direct wavefront sensing,” Opt. Lett.36(7), 1062–1064 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited