OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 11 — Nov. 1, 2011
  • pp: 3150–3166

Measurement of tissue scattering properties using multi-diameter single fiber reflectance spectroscopy: in silico sensitivity analysis

U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 11, pp. 3150-3166 (2011)
http://dx.doi.org/10.1364/BOE.2.003150


View Full Text Article

Enhanced HTML    Acrobat PDF (1549 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Multiple diameter single fiber reflectance (MDSFR) measurements of turbid media can be used to determine the reduced scattering coefficient (μ′s) and a parameter that characterizes the phase function (γ). The MDSFR method utilizes a semi-empirical model that expresses the collected single fiber reflectance intensity as a function of fiber diameter (dfiber), μ′s, and γ. This study investigated the sensitivity of the MDSFR estimates of μ′s and γ to the choice of fiber diameters and spectral information incorporated into the fitting procedure. The fit algorithm was tested using Monte Carlo simulations of single fiber reflectance intensities that investigated biologically relevant ranges of scattering properties (μ′s ∈ [0.4 – 4]mm−1) and phase functions (γ ∈ [1.4 – 1.9]) and for multiple fiber diameters (dfiber ∈ [0.2 – 1.5] mm). MDSFR analysis yielded accurate estimates of μ′s and γ over the wide range of scattering combinations; parameter accuracy was shown to be sensitive to the range of fiber diameters included in the analysis, but not to the number of intermediate fibers. Moreover, accurate parameter estimates were obtained without a priori knowledge about the spectral shape of γ. Observations were used to develop heuristic guidelines for the design of clinically applicable MDSFR probes.

© 2011 OSA

OCIS Codes
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(290.7050) Scattering : Turbid media
(300.6540) Spectroscopy : Spectroscopy, ultraviolet
(300.6550) Spectroscopy : Spectroscopy, visible

ToC Category:
Optics of Tissue and Turbid Media

History
Original Manuscript: July 13, 2011
Revised Manuscript: September 9, 2011
Manuscript Accepted: September 9, 2011
Published: October 26, 2011

Virtual Issues
Advances in Optics for Biotechnology, Medicine, and Surgery (2011) Biomedical Optics Express

Citation
U. A. Gamm, S. C. Kanick, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, "Measurement of tissue scattering properties using multi-diameter single fiber reflectance spectroscopy: in silico sensitivity analysis," Biomed. Opt. Express 2, 3150-3166 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-11-3150


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Boustany, S. Boppart, and V. Backman, “Microscopic Imaging and Spectroscopy with Scattered Light,” Annu. Rev. Biomed. Eng.12, 285–314 (2010). [CrossRef] [PubMed]
  2. R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt.8, 7–16 (2003). [CrossRef] [PubMed]
  3. I. Georgakoudi and J. Van Dam, “Characterization of dysplastic tissue morphology and biochemistry in Barrett’s esophagus using diffuse reflectance and light scattering spectroscopy,” Tech. Gastrointest. Endosc.7, 100–105 (2005). [CrossRef]
  4. J. Mourant, J. Boyer, A. Hielscher, and I. Bigio, “Influence of the scattering phase function on light transport measurements in turbid media performed with small source-detector separations,” Opt. Lett.21, 546–548 (1996). [CrossRef] [PubMed]
  5. M. Canpolat and J. Mourant, “High-angle scattering events strongly affect light collection in clinically relevant measurement geometries for light transport through tissue,” Phys. Med. Biol.45, 1127–1140 (2000). [CrossRef] [PubMed]
  6. F. Bevilacqua and C. Depeursinge, “Monte Carlo study of diffuse reflectance at source–detector separations close to one transport mean free path,” J. Opt. Soc. Am. A16, 2935–2945 (1999). [CrossRef]
  7. A. Kienle, F. Forster, and R. Hibst, “Influence of the phase function on determination of the optical properties of biological tissue by spatially resolved reflectance,” Opt. Lett.26, 1571–1573 (2001). [CrossRef]
  8. F. Bevilacqua, D. Piguet, P. Marquet, J. Gross, B. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt.38, 4939–4950 (1999). [CrossRef]
  9. E. Hull and T. Foster, “Steady-state reflectance spectroscopy in the P3 approximation,” J. Opt. Soc. Am. A18, 584–599 (2001). [CrossRef]
  10. P. Thueler, I. Charvet, F. Bevilacqua, M. Ghislain, G. Ory, P. Marquet, P. Meda, B. Vermeulen, and C. Depeursinge, “In vivo endoscopic tissue diagnostics based on spectroscopic absorption, scattering, and phase function properties,” J. Biomed. Opt.8, 495–503 (2003). [CrossRef] [PubMed]
  11. H. Tian, Y. Liu, and L. Wang, “Influence of the third-order parameter on diffuse reflectance at small source-detector separations,” Opt. Lett.31, 933–935 (2006). [CrossRef] [PubMed]
  12. S. C. Kanick, U. A. Gamm, M. Schouten, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Measurement of the reduced scattering coefficient of turbid media using single fiber reflectance spectroscopy: fiber diameter and phase function dependence,” Biomed. Opt. Express2, 1687–1702 (2011). [CrossRef] [PubMed]
  13. S. C. Kanick, U. A. Gamm, H. J. C. M. Sterenborg, D. J. Robinson, and A. Amelink, “Method to quantitatively estimate wavelength-dependent scattering properties from multi-diameter single fiber reflectance spectra in a turbid medium,” Opt. Lett.36, 2997–2999 (2011). [CrossRef] [PubMed]
  14. W.F. Cheong, S.A. Prahl, and A.J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Elect.26, 2166–2185 (1990). [CrossRef]
  15. E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11, 064026 (2006). [CrossRef]
  16. S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Monte Carlo analysis of single fiber reflectance spectroscopy,” Phys. Med. Biol.54, 6991–7008 (2009). [CrossRef] [PubMed]
  17. S. C. Kanick, D. J. Robinson, H. J. C. M. Sterenborg, and A. Amelink, “Method to quantitate absorption coefficients from single fiber reflectance spectra without knowledge of the scattering properties,” Opt. Lett.36, 2791–2793 (2011). [CrossRef] [PubMed]
  18. P. Bargo, S. Prahl, and S. Jacques, “Collection efficiency of a single optical fiber in turbid media,” Appl. Opt.42, 3187–3197 (2003). [CrossRef] [PubMed]
  19. L. Wang, S. Jacques, and L. Zheng, “MCML–Monte Carlo modeling of light transport in multi-layered tissues,” Comp. Meth. Prog. Biomed.47, 131–146 (1995). [CrossRef]
  20. A. Knüttel and M. Boehlau-Godau, “Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography,” J. Biomed. Opt.5, 83–92 (2000). [CrossRef] [PubMed]
  21. J. J. J. Dirckx, L. C. Kuypers, and W. F. Decraemer, “Refractive index of tissue measured with confocal microscopy,” J. Biomed. Opt.10, 044014 (2005). [CrossRef]
  22. M. Xu and R. R. Alfano, “Fractal mechanisms of light scattering in biological tissue and cells,” Opt. Lett.30, 3051–3053 (2005). [CrossRef] [PubMed]
  23. F. Bevilacqua, A. Berger, A. Cerussi, D. Jakubowski, and B. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt.39, 6498–6507 (2000). [CrossRef]
  24. J. Mourant, J. Freyer, A. Hielscher, A. Eick, D. Shen, and T. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt.37, 3586–3593 (1998). [CrossRef]
  25. A. Amelink, D. J. Robinson, and H. J. C. M. Sterenborg, “Confidence intervals on fit parameters derived from optical reflectance spectroscopy measurements,” J. Biomed. Opt.13, 054044 (2008). [CrossRef] [PubMed]
  26. R. L. P. van Veen, W. Verkruysse, and H. J. C. M. Sterenborg, “Diffuse-reflectance spectroscopy from 500 to 1060 nm by correction for inhomogeneously distributed absorbers,” Opt. Lett.27, 246–248 (2002). [CrossRef]
  27. N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table–based inverse model for determining optical properties of turbid media,” J. Biomed. Opt.13, 050501 (2008). [CrossRef] [PubMed]
  28. G. Palmer and N. Ramanujam, “Monte Carlo-based inverse model for calculating tissue optical properties. Part I: Theory and validation on synthetic phantoms,” Appl. Opt.45, 1062–1071 (2006). [CrossRef] [PubMed]
  29. D. Sharma, A. Agrawal, L. S. Matchette, and T. J. Pfefer, “Evaluation of a fiberoptic-based system for measurement of optical properties in highly attenuating turbid media,” Biomed. Eng. Online5, 49 (2006). [CrossRef] [PubMed]
  30. R. Reif, O. A’Amar, and I. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt.46, 7317–7328 (2007). [CrossRef] [PubMed]
  31. R. H. Wilson, M. Chandra, J. Scheiman, D. Simeone, B. McKenna, J. Purdy, and M.-A. Mycek, “Optical spectroscopy detects histological hallmarks of pancreatic cancer,” Opt. Express17, 17502–17516 (2009). [CrossRef] [PubMed]
  32. A. Kim, M. Roy, F. Dadani, and B. Wilson, “A fiberoptic reflectance probe with multiple source-collector separations to increase the dynamic range of derived tissue optical absorption and scattering coefficients,” Opt. Express18, 5580–5594 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited