OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 11 — Nov. 1, 2011
  • pp: 3167–3178

Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator

Shaun D. Gittard, Alexander Nguyen, Kotaro Obata, Anastasia Koroleva, Roger J. Narayan, and Boris N. Chichkov  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 11, pp. 3167-3178 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1819 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Two-photon polymerization is an appealing technique for producing microscale devices due to its flexibility in producing structures with a wide range of geometries as well as its compatibility with materials suitable for biomedical applications. The greatest limiting factor in widespread use of two-photon polymerization is the slow fabrication times associated with line-by-line, high-resolution structuring. In this study, a recently developed technology was used to produce microstructures by two-photon polymerization with multiple foci, which significantly reduces the production time. Computer generated hologram pattern technology was used to generate multiple laser beams in controlled positions from a single laser. These multiple beams were then used to simultaneously produce multiple microstructures by two-photon polymerization. Arrays of micro-Venus structures, tissue engineering scaffolds, and microneedle arrays were produced by multifocus two-photon polymerization. To our knowledge, this work is the first demonstration of multifocus two-photon polymerization technology for production of a functional medical device. Multibeam fabrication has the potential to greatly improve the efficiency of two-photon polymerization production of microscale devices such as tissue engineering scaffolds and microneedle arrays.

© 2011 OSA

OCIS Codes
(090.1760) Holography : Computer holography
(090.2890) Holography : Holographic optical elements
(140.7090) Lasers and laser optics : Ultrafast lasers
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(220.4000) Optical design and fabrication : Microstructure fabrication
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Biomaterials, Biomimetics, and Biomechanics

Original Manuscript: August 8, 2011
Revised Manuscript: October 7, 2011
Manuscript Accepted: October 9, 2011
Published: October 26, 2011

Shaun D. Gittard, Alexander Nguyen, Kotaro Obata, Anastasia Koroleva, Roger J. Narayan, and Boris N. Chichkov, "Fabrication of microscale medical devices by two-photon polymerization with multiple foci via a spatial light modulator," Biomed. Opt. Express 2, 3167-3178 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Ovsianikov, B. Chichkov, O. Adunka, H. Pillsbury, A. Doraiswamy, and R. J. Narayan, “Rapid prototyping of ossicular replacement prostheses,” Appl. Surf. Sci. 253(15), 6603–6607 (2007). [CrossRef]
  2. K. J. Hemker and W. N. Sharpe., “Microscale characterization of mechanical properties,” Annu. Rev. Mater. Res. 37(1), 93–126 (2007). [CrossRef]
  3. A. Ostendorf and B. N. Chichkov, “Two-photon polymerization: a new approach to micromachining,” Photon. Spectra 40, 72–79 (2006).
  4. C. Schizas, V. Melissinaki, A. Gaidukeviciute, C. Reinhardt, C. Ohrt, V. Dedoussis, B. Chichkov, C. Fotakis, M. Farsari, and D. Karalekas, “On the design and fabrication by two-photon polymerization of a readily assembled micro-valve,” Int. J. Adv. Manuf. Technol. 48(5-8), 435–441 (2010). [CrossRef]
  5. S. D. Gittard, A. Ovsianikov, B. N. Chichkov, A. Doraiswamy, and R. J. Narayan, “Two-photon polymerization of microneedles for transdermal drug delivery,” Expert Opin. Drug Deliv. 7(4), 513–533 (2010). [CrossRef] [PubMed]
  6. S. D. Gittard and R. J. Narayan, “Laser direct writing of micro- and nano-scale medical devices,” Expert Rev. Med. Devices 7(3), 343–356 (2010). [CrossRef] [PubMed]
  7. R. J. Narayan, A. Doraiswamy, D. B. Chrisey, and B. N. Chichkov, “Medical prototyping using two photon polymerization,” Mater. Today 13(12), 42–48 (2010). [CrossRef]
  8. R. Narayan, “Two photon polymerization: an emerging method for rapid prototyping of ceramic-polymer hybrid materials for medical applications,” Am. Ceram. Soc. Bull. 88, 20–25 (2009).
  9. A. Doraiswamy, C. Jin, R. J. Narayan, P. Mageswaran, P. Mente, R. Modi, R. Auyeung, D. B. Chrisey, A. Ovsianikov, and B. Chichkov, “Two photon induced polymerization of organic-inorganic hybrid biomaterials for microstructured medical devices,” Acta Biomater. 2(3), 267–275 (2006). [CrossRef] [PubMed]
  10. K. Lee, R. H. Kim, D. Yang, and S. H. Park, “Advances in 3D nano/microfabrication using two-photon initiated polymerization,” Prog. Polym. Sci. 33(6), 631–681 (2008). [CrossRef]
  11. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003). [CrossRef] [PubMed]
  12. D. Tan, Y. Li, F. Qi, H. Yang, Q. Gong, X. Dong, and X. Duan, “Reduction in feature size of two-photon polymerization using SCR500,” Appl. Phys. Lett. 90(7), 071106 (2007). [CrossRef]
  13. S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology 16(6), 846–849 (2005). [CrossRef]
  14. S. D. Gittard, P. R. Miller, R. D. Boehm, A. Ovsianikov, B. N. Chichkov, J. Heiser, J. Gordon, N. A. Monteiro-Riviere, and R. J. Narayan, “Multiphoton microscopy of transdermal quantum dot delivery using two photon polymerization-fabricated polymer microneedles,” Faraday Discuss. 149, 171–185, discussion 227–245 (2011). [CrossRef] [PubMed]
  15. A. Ovsianikov, S. Passinger, R. Houbertz, and B. N. Chichkov, “Three dimensional material processing with femtosecond lasers,” in Laser Ablation and its Applications, C. Phipps, ed. (Springer, 2007), pp. 121–157.
  16. A. Ovsianikov, B. Chichkov, P. Mente, N. A. Monteiro-Riviere, A. Doraiswamy, and R. J. Narayan, “Two photon polymerization of polymer-ceramic hybrid materials for transdermal drug delivery,” Int. J. Appl. Ceram. Technol. 4(1), 22–29 (2007). [CrossRef]
  17. A. Ovsianikov, A. Ostendorf, and B. N. Chichkov, “Three-dimensional photofabrication with femtosecond lasers for applications in photonics and biomedicine,” Appl. Surf. Sci. 253(15), 6599–6602 (2007). [CrossRef]
  18. H. Hidai, H. Jeon, D. J. Hwang, and C. P. Grigoropoulos, “Self-standing aligned fiber scaffold fabrication by two photon photopolymerization,” Biomed. Microdevices 11(3), 643–652 (2009). [CrossRef] [PubMed]
  19. H. Jeon, H. Hidai, D. J. Hwang, and C. P. Grigoropoulos, “Fabrication of arbitrary polymer patterns for cell study by two-photon polymerization process,” J. Biomed. Mater. Res. A 93(1), 56–66 (2010). [PubMed]
  20. A. Doraiswamy, A. Ovsianikov, S. D. Gittard, N. A. Monteiro-Riviere, R. Crombez, E. Montalvo, W. Shen, B. N. Chichkov, and R. J. Narayan, “Fabrication of microneedles using two photon polymerization for transdermal delivery of nanomaterials,” J. Nanosci. Nanotechnol. 10(10), 6305–6312 (2010). [CrossRef] [PubMed]
  21. A. Ovsianikov, M. Malinauskas, S. Schlie, B. Chichkov, S. Gittard, R. Narayan, M. Löbler, K. Sternberg, K. P. Schmitz, and A. Haverich, “Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications,” Acta Biomater. 7(3), 967–974 (2011). [CrossRef] [PubMed]
  22. S. D. Gittard, A. Ovsianikov, N. A. Monteiro-Riviere, J. Lusk, P. Morel, P. Minghetti, C. Lenardi, B. N. Chichkov, and R. J. Narayan, “Fabrication of polymer microneedles using a two-photon polymerization and micromolding process,” J. Diabetes Sci. Tech. 3(2), 304–311 (2009). [PubMed]
  23. S. D. Gittard, R. J. Narayan, C. Jin, A. Ovsianikov, B. N. Chichkov, N. A. Monteiro-Riviere, S. Stafslien, and B. Chisholm, “Pulsed laser deposition of antimicrobial silver coating on Ormocer microneedles,” Biofabrication 1(4), 041001 (2009). [CrossRef] [PubMed]
  24. S. D. Gittard, A. Ovsianikov, H. Akar, B. Chichkov, N. A. Monteiro-Riviere, S. Stafslien, B. Chisholm, C. C. Shin, C. M. Shih, S. J. Lin, Y. Y. Su, and R. J. Narayan, “Two photon polymerization-micromolding of polyethylene glycol-gentamicin sulfate microneedles,” Adv. Eng. Mater. 12(4), B77–B82 (2010). [PubMed]
  25. F. Claeyssens, E. A. Hasan, A. Gaidukeviciute, D. S. Achilleos, A. Ranella, C. Reinhardt, A. Ovsianikov, X. Shizhou, C. Fotakis, M. Vamvakaki, B. N. Chichkov, and M. Farsari, “Three-dimensional biodegradable structures fabricated by two-photon polymerization,” Langmuir 25(5), 3219–3223 (2009). [CrossRef] [PubMed]
  26. V. Melissinaki, A. A. Gill, I. Ortega, M. Vamvakaki, A. Ranella, J. W. Haycock, C. Fotakis, M. Farsari, and F. Claeyssens, “Direct laser writing of 3D scaffolds for neural tissue engineering applications,” Biofabrication 3(4), 045005 (2011). [CrossRef] [PubMed]
  27. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication,” ACS Nano 2(11), 2257–2262 (2008). [CrossRef] [PubMed]
  28. A. Ovsianikov, X. Shizhou, M. Farsari, M. Vamvakaki, C. Fotakis, and B. N. Chichkov, “Shrinkage of microstructures produced by two-photon polymerization of Zr-based hybrid photosensitive materials,” Opt. Express 17(4), 2143–2148 (2009). [CrossRef] [PubMed]
  29. I. Sakellari, A. Gaidukeviciute, A. Giakoumaki, D. Gray, C. Fotakis, M. Farsari, M. Vamvakaki, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication,” Appl. Phys., A Mater. Sci. Process. 100(2), 359–364 (2010). [CrossRef]
  30. X. M. Duan, H. B. Sun, K. Kaneko, and S. Kawata, “Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication,” Thin Solid Films 453–454, 518–521 (2004). [CrossRef]
  31. J. D. Pitts, P. J. Campagnola, G. A. Epling, and S. L. Goodman, “Submicron multiphoton free-form fabrication of proteins and polymers: Studies of reaction efficiencies and applications in sustained release,” Macromol. 33(5), 1514–1523 (2000). [CrossRef]
  32. J. D. Pitts, A. R. Howell, R. Taboada, I. Banerjee, J. Wang, S. L. Goodman, and P. J. Campagnola, “New photoactivators for multiphoton excited three-dimensional submicron cross-linking of proteins: bovine serum albumin and type 1 collagen,” Photochem. Photobiol. 76(2), 135–144 (2002). [CrossRef] [PubMed]
  33. A. Ovsianikov, A. Deiwick, S. Van Vlierberghe, M. Pflaum, M. Wilhelmi, P. Dubruel, and B. Chichkov, “Laser fabrication of 3D gelatin scaffolds for the generation of bioartificial tissues,” Mater. 4(1), 288–299 (2011). [CrossRef]
  34. A. Ovsianikov, A. Deiwick, S. Van Vlierberghe, P. Dubruel, L. Möller, G. Dräger, and B. Chichkov, “Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue engineering,” Biomacromolecules 12(4), 851–858 (2011). [PubMed]
  35. K. H. Haas and H. Wolter, “Synthesis, properties and applications of inorganic-organic copolymers (ORMOCER®s),” Curr. Opin. Solid State Mater. Sci. 4(6), 571–580 (1999). [CrossRef]
  36. A. Ovsianikov, S. Schlie, A. Ngezahayo, A. Haverich, and B. N. Chichkov, “Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials,” J. Tissue Eng. Regen. Med. 1(6), 443–449 (2007). [CrossRef] [PubMed]
  37. H. Wolter, W. Storch, and H. Ott, “New inorganic/organic copolymers (Ormocer®s) for dental applications” in Mater. Res. Soc. Symp. Proc. 346, 143–149 (1994).
  38. N. Moszner and U. Salz, “New developments of polymeric dental composites,” Prog. Polym. Sci. 26(4), 535–576 (2001). [CrossRef]
  39. A. S. Al-Hiyasat, H. Darmani, and M. M. Milhem, “Cytotoxicity evaluation of dental resin composites and their flowable derivatives,” Clin. Oral Investig. 9(1), 21–25 (2005). [CrossRef] [PubMed]
  40. A. Ovsianikov, M. Gruene, M. Pflaum, L. Koch, F. Maiorana, M. Wilhelmi, A. Haverich, and B. Chichkov, “Laser printing of cells into 3D scaffolds,” Biofabrication 2(1), 014104 (2010). [CrossRef] [PubMed]
  41. A. Koroleva, S. D. Gittard, S. Schlie, and B. N. Chichkov, Fabrication of tissue engineering scaffolds via two-photon polymerization and microreplication techniques,” presented at the Eccomas – International Conference on Tissue Engineering. Fernandes et al. (Eds.), Lisbon, Portugal, June 2–4 (2011).
  42. R. J. Narayan, C. M. Jin, A. Doraiswamy, I. N. Mihailescu, M. Jelinek, A. Ovsianikov, B. Chichkov, and D. B. Chrisey, “Laser processing of advanced bioceramics,” Adv. Eng. Mater. 7(12), 1083–1098 (2005). [CrossRef]
  43. P. Tayalia, C. R. Mendonca, T. Baldacchini, D. J. Mooney, and E. Mazur, “3D cell-migration studies using two-photon engineered polymer scaffolds,” Adv. Mater. (Deerfield Beach Fla.) 20(23), 4494–4498 (2008). [CrossRef]
  44. S. Schlie, A. Ngezahayo, A. Ovsianikov, T. Fabian, H. A. Kolb, H. Haferkamp, and B. N. Chichkov, “Three-dimensional cell growth on structures fabricated from ORMOCER by two-photon polymerization technique,” J. Biomater. Appl. 22(3), 275–287 (2007). [CrossRef] [PubMed]
  45. A. Koroleva, S. Schlie, E. Fadeeva, S. D. Gittard, P. Miller, A. Ovsianikov, J. Koch, R. J. Narayan, and B. N. Chichkov, “Microreplication of laser-fabricated surface and three-dimensional structures,” J. Opt. 12(12), 124009 (2010). [CrossRef]
  46. D. Wu, Q. D. Chen, L. G. Niu, J. N. Wang, J. Wang, R. Wang, H. Xia, and H. B. Sun, “Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices,” Lab Chip 9(16), 2391–2394 (2009). [CrossRef] [PubMed]
  47. L. Kelemen, S. Valkai, and P. Ormos, “Parallel photopolymerisation with complex light patterns generated by diffractive optical elements,” Opt. Express 15(22), 14488–14497 (2007). [CrossRef] [PubMed]
  48. H. Takahashi, S. Hasegawa, A. Takita, and Y. Hayasaki, “Sparse-exposure technique in holographic two-photon polymerization,” Opt. Express 16(21), 16592–16599 (2008). [PubMed]
  49. N. J. Jenness, K. D. Wulff, M. S. Johannes, M. J. Padgett, D. G. Cole, and R. L. Clark, “Three-dimensional parallel holographic micropatterning using a spatial light modulator,” Opt. Express 16(20), 15942–15948 (2008). [CrossRef] [PubMed]
  50. K. Obata, J. Koch, U. Hinze, and B. N. Chichkov, “Multi-focus two-photon polymerization technique based on individually controlled phase modulation,” Opt. Express 18(16), 17193–17200 (2010). [CrossRef] [PubMed]
  51. N. Kato, N. Takeyasu, Y. Adachi, H.-B. Sun, and S. Kawata, “Multiple-spot parallel processing for laser micronanofabrication,” Appl. Phys. Lett. 86(4), 044102–044104 (2005). [CrossRef]
  52. Y. Nakata, T. Okada, and M. Maeda, “Nano-sized hollow bump array generated by single femtosecond laser pulse,” Jpn. J. Appl. Phys. 42(Part 2, No. 12A), L1452–L1454 (2003). [CrossRef]
  53. T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82(17), 2758–2760 (2003). [CrossRef]
  54. X. Dong, Z. Zhao, and X. Duan, “Micronanofabrication of assembled three-dimensional microstructures by designable multiple beams multiphoton processing,” Appl. Phys. Lett. 91(12), 124103 (2007). [CrossRef]
  55. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002). [CrossRef]
  56. E. Frumker and Y. Silberberg, “Femtosecond pulse shaping using a two-dimensional liquid-crystal spatial light modulator,” Opt. Lett. 32(11), 1384–1386 (2007). [CrossRef] [PubMed]
  57. Y. Hayasaki, T. Sugimoto, A. Takita, and N. Nishida, “Variable holographic femtosecond laser processing by use of a spatial light modulator,” Appl. Phys. Lett. 87(3), 031101–031103 (2005). [CrossRef]
  58. J. Leach, K. Wulff, G. Sinclair, P. Jordan, J. Courtial, L. Thomson, G. Gibson, K. Karunwi, J. Cooper, Z. J. Laczik, and M. Padgett, “Interactive approach to optical tweezers control,” Appl. Opt. 45(5), 897–903 (2006). [CrossRef] [PubMed]
  59. E. Fadeeva, S. Schlie, J. Koch, and B. N. Chichkov, “selective cell control by surface structuring for orthopedic applications,” J. Adhes. Sci. Technol. 24(13), 2257–2270 (2010). [CrossRef]
  60. E. Rebollar, I. Frischauf, M. Olbrich, T. Peterbauer, S. Hering, J. Preiner, P. Hinterdorfer, C. Romanin, and J. Heitz, “Proliferation of aligned mammalian cells on laser-nanostructured polystyrene,” Biomaterials 29(12), 1796–1806 (2008). [CrossRef] [PubMed]
  61. A. I. Teixeira, P. F. Nealey, and C. J. Murphy, “Responses of human keratocytes to micro- and nanostructured substrates,” J. Biomed. Mater. Res. A 71(3), 369–376 (2004). [CrossRef] [PubMed]
  62. N. J. Jenness, R. T. Hill, A. Hucknall, A. Chilkoti, and R. L. Clark, “A versatile diffractive maskless lithography for single-shot and serial microfabrication,” Opt. Express 18(11), 11754–11762 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited