OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 11 — Nov. 1, 2011
  • pp: 3179–3193

Bioluminescence tomography using eigenvectors expansion and iterative solution for the optimized permissible source region

Mohamed A. Naser and Michael S. Patterson  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 11, pp. 3179-3193 (2011)
http://dx.doi.org/10.1364/BOE.2.003179


View Full Text Article

Enhanced HTML    Acrobat PDF (4211 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A reconstruction algorithm for bioluminescence tomography (BLT) has been developed. The algorithm numerically calculates the Green’s function at different wavelengths using the diffusion equation and finite element method. The optical properties used in calculating the Green’s function are reconstructed using diffuse optical tomography (DOT) and assuming anatomical information is provided by x-ray computed tomography or other methods. A symmetric system of equations is formed using the Green’s function and the measured light fluence rate and the resulting eigenvalue problem is solved to get the eigenvectors of this symmetric system of equations. A space can be formed from the eigenvectors obtained and the reconstructed source is written as an expansion of the eigenvectors corresponding to non-zero eigenvalues. The coefficients of the expansion are found to obtain the reconstructed BL source distribution. The problem is solved iteratively by using a permissible source region that is shrunk by removing nodes with low probability to contribute to the source. Throughout this process the permissible region shrinks from the entire object to just a few nodes. The best estimate of the reconstructed source is chosen that which minimizes the difference between the calculated and measured light fluence rates. 3D simulations presented here show that the reconstructed source is in good agreement with the actual source in terms of locations, magnitudes, sizes, and total powers for both localized multiple sources and large inhomogeneous source distributions.

© 2011 OSA

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Image Reconstruction and Inverse Problems

History
Original Manuscript: September 27, 2011
Revised Manuscript: October 27, 2011
Manuscript Accepted: October 25, 2011
Published: October 26, 2011

Citation
Mohamed A. Naser and Michael S. Patterson, "Bioluminescence tomography using eigenvectors expansion and iterative solution for the optimized permissible source region," Biomed. Opt. Express 2, 3179-3193 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-11-3179


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol.23(3), 313–320 (2005). [CrossRef] [PubMed]
  2. R. Weissleder and U. Mahmood, “Molecular imaging,” Radiology219(2), 316–333 (2001). [PubMed]
  3. J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nat. Rev. Drug Discov.7(7), 591–607 (2008). [CrossRef] [PubMed]
  4. J. Tian, J. Bai, X. P. Yan, S. Bao, Y. Li, W. Liang, and X. Yang, “Multimodality molecular imaging,” IEEE Eng. Med. Biol. Mag.27(5), 48–57 (2008). [CrossRef] [PubMed]
  5. X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Opt. Express15(26), 18300–18317 (2007). [CrossRef] [PubMed]
  6. G. Wang, Y. Li, and M. Jiang, “Uniqueness theorems in bioluminescence tomography,” Med. Phys.31(8), 2289–2299 (2004). [CrossRef] [PubMed]
  7. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, “Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging,” Phys. Med. Biol.50(23), 5421–5441 (2005). [CrossRef] [PubMed]
  8. S. Ahn, A. J. Chaudhari, F. Darvas, C. A. Bouman, and R. M. Leahy, “Fast iterative image reconstruction methods for fully 3D multispectral bioluminescence tomography,” Phys. Med. Biol.53(14), 3921–3942 (2008). [CrossRef] [PubMed]
  9. H. Dehghani, S. C. Davis, S. Jiang, B. W. Pogue, K. D. Paulsen, and M. S. Patterson, “Spectrally resolved bioluminescence optical tomography,” Opt. Lett.31(3), 365–367 (2006). [CrossRef] [PubMed]
  10. W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, “Practical reconstruction method for bioluminescence tomography,” Opt. Express13(18), 6756–6771 (2005). [CrossRef] [PubMed]
  11. X. He, J. Liang, X. Qu, H. Huang, Y. Hou, and J. Tian, “Truncated total least squares method with a practical truncation parameter choice scheme for bioluminescence tomography inverse problem,” Int. J. Biomed. Imaging2010, 291874 (2010). [CrossRef] [PubMed]
  12. H. Huang, X. Qu, J. Liang, X. He, X. Chen, D. Yang, and J. Tian, “A multi-phase level set framework for source reconstruction in bioluminescence tomography,” J. Comput. Phys.229(13), 5246–5256 (2010). [CrossRef]
  13. J. Feng, K. Jia, G. Yan, S. Zhu, C. Qin, Y. Lv, and J. Tian, “An optimal permissible source region strategy for multispectral bioluminescence tomography,” Opt. Express16(20), 15640–15654 (2008). [CrossRef] [PubMed]
  14. Y. Lu, X. Zhang, A. Douraghy, D. Stout, J. Tian, T. F. Chan, and A. F. Chatziioannou, “Source reconstruction for spectrally-resolved bioluminescence tomography with sparse a priori information,” Opt. Express17(10), 8062–8080 (2009). [CrossRef] [PubMed]
  15. P. Mohajerani, A. A. Eftekhar, J. Huang, and A. Adibi, “Optimal sparse solution for fluorescent diffuse optical tomography: theory and phantom experimental results,” Appl. Opt.46(10), 1679–1685 (2007). [CrossRef] [PubMed]
  16. N. Cao, A. Nehorai, and M. Jacobs, “Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm,” Opt. Express15(21), 13695–13708 (2007). [CrossRef] [PubMed]
  17. M. A. Naser and M. S. Patterson, “Algorithms for bioluminescence tomography incorporating anatomical information and reconstruction of tissue optical properties,” Biomed. Opt. Express1(2), 512–526 (2010). [CrossRef] [PubMed]
  18. M. A. Naser and M. S. Patterson, “Improved bioluminescence and fluorescence reconstruction algorithms using diffuse optical tomography, normalized data, and optimized selection of the permissible source region,” Biomed. Opt. Express2(1), 169–184 (2011). [CrossRef] [PubMed]
  19. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Med. Phys.20(2), 299–309 (1993). [CrossRef] [PubMed]
  20. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Med. Phys.22(11), 1779–1792 (1995). [CrossRef] [PubMed]
  21. H. Jiang, “Frequency-domain fluorescent diffusion tomography: a finite-element-based algorithm and simulations,” Appl. Opt.37(22), 5337–5343 (1998). [CrossRef] [PubMed]
  22. A. H. Hielscher, A. D. Klose, and K. M. Hanson, “Gradient-based iterative image reconstruction scheme for time-resolved optical tomography,” IEEE Trans. Med. Imaging18(3), 262–271 (1999). [CrossRef] [PubMed]
  23. X. Gu, Q. Zhang, L. Larcom, and H. Jiang, “Three-dimensional bioluminescence tomography with model-based reconstruction,” Opt. Express12(17), 3996–4000 (2004). [CrossRef] [PubMed]
  24. N. V. Slavine, M. A. Lewis, E. Richer, and P. P. Antich, “Iterative reconstruction method for light emitting sources based on the diffusion equation,” Med. Phys.33(1), 61–68 (2006). [CrossRef] [PubMed]
  25. D. C. Comsa, T. J. Farrell, and M. S. Patterson, “Quantification of bioluminescence images of point source objects using diffusion theory models,” Phys. Med. Biol.51(15), 3733–3746 (2006). [CrossRef] [PubMed]
  26. C. Kuo, O. Coquoz, T. L. Troy, H. Xu, and B. W. Rice, “Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging,” J. Biomed. Opt.12(2), 024007 (2007). [CrossRef] [PubMed]
  27. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl.15(2), R41–R93 (1999). [CrossRef]
  28. A. D. Klose, “Transport-theory-based stochastic image reconstruction of bioluminescence sources,” J. Opt. Soc. Am. A24(6), 1601–1608 (2007). [CrossRef]
  29. H. Dehghani, M. E. Eames, P. K. Yalavarthy, S. C. Davis, S. Srinivasan, C. M. Carpenter, B. W. Pogue, and K. D. Paulsen, “Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction,” Commun. Numer. Methods Eng.25(6), 711–732 (2009). [CrossRef] [PubMed]
  30. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol.50(17), 4225–4241 (2005). [CrossRef] [PubMed]
  31. S. A. Prahl, Oregon Medical Laser Clinic (2001), http://omlc.ogi.edu/spectra/index.html .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited