OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 11 — Nov. 1, 2011
  • pp: 3193–3206

Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging

Jason R. Cook, Richard R. Bouchard, and Stanislav Y. Emelianov  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 11, pp. 3193-3206 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1168 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In both photoacoustic (PA) and ultrasonic (US) imaging, overall image quality is influenced by the optical and acoustical properties of the medium. Consequently, with the increased use of combined PA and US (PAUS) imaging in preclinical and clinical applications, the ability to provide phantoms that are capable of mimicking desired properties of soft tissues is critical. To this end, gelatin-based phantoms were constructed with various additives to provide realistic acoustic and optical properties. Forty-micron, spherical silica particles were used to induce acoustic scattering, Intralipid® 20% IV fat emulsion was employed to enhance optical scattering and ultrasonic attenuation, while India Ink, Direct Red 81, and Evans blue dyes were utilized to achieve optical absorption typical of soft tissues. The following parameters were then measured in each phantom formulation: speed of sound, acoustic attenuation (from 6 to 22 MHz), acoustic backscatter coefficient (from 6 to 22 MHz), optical absorption (from 400 nm to 1300 nm), and optical scattering (from 400 nm to 1300 nm). Results from these measurements were then compared to similar measurements, which are offered by the literature, for various soft tissue types. Based on these comparisons, it was shown that a reasonably accurate tissue-mimicking phantom could be constructed using a gelatin base with the aforementioned additives. Thus, it is possible to construct a phantom that mimics specific tissue acoustical and/or optical properties for the purpose of PAUS imaging studies.

© 2011 OSA

OCIS Codes
(110.3000) Imaging systems : Image quality assessment
(160.4760) Materials : Optical properties
(170.5120) Medical optics and biotechnology : Photoacoustic imaging
(170.7170) Medical optics and biotechnology : Ultrasound
(290.5820) Scattering : Scattering measurements

ToC Category:
Calibration, Validation and Phantom Studies

Original Manuscript: September 20, 2011
Revised Manuscript: October 22, 2011
Manuscript Accepted: October 26, 2011
Published: October 27, 2011

Jason R. Cook, Richard R. Bouchard, and Stanislav Y. Emelianov, "Tissue-mimicking phantoms for photoacoustic and ultrasonic imaging," Biomed. Opt. Express 2, 3193-3206 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. L. Prince and J. M. Links, Medical Imaging Signals and Systems (Pearson Prentice Hall, 2006).
  2. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum.77(4), 041101 (2006). [CrossRef]
  3. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008). [CrossRef] [PubMed]
  4. G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt.12(4), 044020 (2007). [CrossRef] [PubMed]
  5. A. Agarwal, S. Huang, M. O’Donnell, K. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys.102(6), 064701 (2007). [CrossRef]
  6. S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength photoacoustic imaging and plasmon resonance coupling of gold nanoparticles for selective detection of cancer,” Nano Lett.9(8), 2825–2831 (2009). [CrossRef] [PubMed]
  7. A. Needles, A. Heinmiller, P. Ephrat, C. Bilan-Tracey, A. Trujillo, C. Theodoropoulos, D. Hirson, and F. Foster, “Development of a combined photoacoustic micro-ultrasound system for estimating blood oxygenation,” in 2010 IEEE Ultrasonics Symposium (IUS) (IEEE, 2010). pp. 390–393.
  8. J. L. Su, R. R. Bouchard, A. B. Karpiouk, J. D. Hazle, and S. Y. Emelianov, “Photoacoustic imaging of prostate brachytherapy seeds,” Biomed. Opt. Express2(8), 2243–2254 (2011). [CrossRef] [PubMed]
  9. J. J. Niederhauser, M. Jaeger, R. Lemor, P. Weber, and M. Frenz, “Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo,” IEEE Trans. Med. Imaging24(4), 436–440 (2005). [CrossRef] [PubMed]
  10. C. Haisch, K. Eilert-Zell, M. M. Vogel, P. Menzenbach, and R. Niessner, “Combined optoacoustic/ultrasound system for tomographic absorption measurements: possibilities and limitations,” Anal. Bioanal. Chem.397(4), 1503–1510 (2010). [CrossRef] [PubMed]
  11. B. Wang, E. Yantsen, T. Larson, A. B. Karpiouk, S. Sethuraman, J. L. Su, K. Sokolov, and S. Y. Emelianov, “Plasmonic intravascular photoacoustic imaging for detection of macrophages in atherosclerotic plaques,” Nano Lett.9(6), 2212–2217 (2009). [CrossRef] [PubMed]
  12. E. L. Madsen, J. A. Zagzebski, R. A. Banjavie, and R. E. Jutila, “Tissue mimicking materials for ultrasound phantoms,” Med. Phys.5(5), 391–394 (1978). [CrossRef] [PubMed]
  13. F. T. D’Astous and F. S. Foster, “Frequency dependence of ultrasound attenuation and backscatter in breast tissue,” Ultrasound Med. Biol.12(10), 795–808 (1986). [CrossRef] [PubMed]
  14. Z. F. Lu, J. A. Zagzebski, and F. T. Lee, “Ultrasound backscatter and attenuation in human liver with diffuse disease,” Ultrasound Med. Biol.25(7), 1047–1054 (1999). [CrossRef] [PubMed]
  15. D. Nicholas, “Evaluation of backscattering coefficients for excised human tissues: results, interpretation and associated measurements,” Ultrasound Med. Biol.8(1), 17–28 (1982). [CrossRef]
  16. K. K. Shung, R. A. Sigelmann, and J. M. Reid, “Scattering of ultrasound by blood,” IEEE Trans. Biomed. Eng.BME-23(6), 460–467 (1976). [CrossRef] [PubMed]
  17. K. A. Topp and W. D. O’Brien., “Anisotropy of ultrasonic propagation and scattering properties in fresh rat skeletal muscle in vitro,” J. Acoust. Soc. Am.107(2), 1027–1033 (2000). [CrossRef] [PubMed]
  18. T. J. Hall, M. Bilgen, M. F. Insana, and T. A. Krouskop, “Phantom materials for elastography,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control44(6), 1355–1365 (1997). [CrossRef]
  19. L. K. Ryan and F. S. Foster, “Tissue equivalent vessel phantoms for intravascular ultrasound,” Ultrasound Med. Biol.23(2), 261–273 (1997). [CrossRef] [PubMed]
  20. B. Fay, K. Brendel, and G. Ludwig, “Studies of inhomogeneous substances by ultrasonic back-scattering,” Ultrasound Med. Biol.2(3), 195–198 (1976). [CrossRef] [PubMed]
  21. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron.26(12), 2166–2185 (1990). [CrossRef]
  22. E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt.11(6), 064026 (2006). [CrossRef] [PubMed]
  23. S. Watanabe, T. J. Flotte, D. J. McAuliffe, and S. L. Jacques, “Putative photoacoustic damage in skin induced by pulsed ArF excimer laser,” J. Invest. Dermatol.90(5), 761–766 (1988). [CrossRef] [PubMed]
  24. A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400–2500 nm,” J. Biomed. Opt.4(1), 36 (1999). [CrossRef]
  25. C. J. M. Moes, M. J. C. van Gemert, W. M. Star, J. P. Marijnissen, and S. A. Prahl, “Measurements and calculations of the energy fluence rate in a scattering and absorbing phantom at 633 nm,” Appl. Opt.28(12), 2292–2296 (1989). [CrossRef] [PubMed]
  26. A. M. De Grand, S. J. Lomnes, D. S. Lee, M. Pietrzykowski, S. Ohnishi, T. G. Morgan, A. Gogbashian, R. G. Laurence, and J. V. Frangioni, “Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons,” J. Biomed. Opt.11(1), 014007 (2006). [CrossRef] [PubMed]
  27. E. L. Madsen, M. A. Hobson, H. Shi, T. Varghese, and G. R. Frank, “Stability of heterogeneous elastography phantoms made from oil dispersions in aqueous gels,” Ultrasound Med. Biol.32(2), 261–270 (2006). [CrossRef] [PubMed]
  28. M. Greenspan, “Tables of the speed of sound in water,” J. Acoust. Soc. Am.31(1), 75 (1959). [CrossRef]
  29. R. C. Chivers and C. R. Hill, “Ultrasonic attenuation in human tissue,” Ultrasound Med. Biol.2(1), 25–29 (1975). [CrossRef] [PubMed]
  30. S. Chaffaı̈, V. Roberjot, F. Peyrin, G. Berger, and P. Laugier, “Frequency dependence of ultrasonic backscattering in cancellous bone: autocorrelation model and experimental results,” J. Acoust. Soc. Am.108(5), 2403–2411 (2000). [CrossRef] [PubMed]
  31. R. L. Romijn, J. M. Thijssen, J. L. van Delft, D. de Wolff-Rouendaal, J. van Best, and J. A. Oosterhuis, “In vivo ultrasound backscattering estimation for tumour diagnosis: an animal study,” Ultrasound Med. Biol.15(5), 471–479 (1989). [CrossRef] [PubMed]
  32. V. Roberjot, S. L. Bridal, P. Laugier, and G. Berger, “Absolute backscatter coefficient over a wide range of frequencies in a tissue-mimicking phantom containing two populations of scatterers,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control43(5), 970–978 (1996). [CrossRef]
  33. A. Kharine, S. Manohar, R. Seeton, R. G. M. Kolkman, R. A. Bolt, W. Steenbergen, and F. F. de Mul, “Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography,” Phys. Med. Biol.48(3), 357–370 (2003). [CrossRef] [PubMed]
  34. T. Moffitt, Y. C. Chen, and S. A. Prahl, “Preparation and characterization of polyurethane optical phantoms,” J. Biomed. Opt.11(4), 041103 (2006). [CrossRef] [PubMed]
  35. S. A. Prahl, M. J. C. van Gemert, and A. J. Welch, “Determining the optical properties of turbid mediaby using the adding-doubling method,” Appl. Opt.32(4), 559–568 (1993). [CrossRef] [PubMed]
  36. S. A. Prahl, “Inverse adding-doubling program,” Oregon Medical Laser Center, St. Vincent Hospital (2011).
  37. K. F. Palmer and D. Williams, “Optical properties of water in the near infrared,” J. Opt. Soc. Am.64(8), 1107–1110 (1974). [CrossRef]
  38. H. Maaß and U. Kühnapfel, “Noninvasive measurement of elastic properties of living tissue,” in CARS '99—Computer Assisted Radiology and Surgery, 13th Internat.Symp.and Exhibition (1999), pp. 865–870
  39. E. L. Madsen, J. A. Zagzebski, R. A. Banjavic, and M. M. Burlew, “Phantom material and method,” U.S. patent 4277367 (July 7, 1981).
  40. H. Buiteveld, J. Hakvoort, and M. Donze, “Optical properties of pure water,” Proc. SPIE2258, 174–183 (1994). [CrossRef]
  41. L. Marrucci, D. Paparo, M. Vetrano, M. Colicchio, E. Santamato, and G. Viscardi, “Role of dye structure in photoinduced reorientation of dye-doped liquid crystals,” J. Chem. Phys.113(22), 10361 (2000). [CrossRef]
  42. I. Jones, W. R. Jackson, and A. M. Halpern, “Medium effects on fluorescence quantum yields and lifetimes for coumarin laser dyes,” Chem. Phys. Lett.72(2), 391–395 (1980). [CrossRef]
  43. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. C. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med.12(5), 510–519 (1992). [CrossRef] [PubMed]
  44. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt.30(31), 4507–4514 (1991). [CrossRef] [PubMed]
  45. S. Prahl, “Everything I think you should know about inverse adding-doubling,” Oregon Medical Laser Center, St. Vincent Hospital (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited