OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 12 — Dec. 1, 2011
  • pp: 3284–3294

Modeling diffuse reflectance from homogeneous semi-infinite turbid media for biological tissue applications: a Monte Carlo study

George Zonios and Aikaterini Dimou  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 12, pp. 3284-3294 (2011)
http://dx.doi.org/10.1364/BOE.2.003284


View Full Text Article

Enhanced HTML    Acrobat PDF (921 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Diffuse reflectance spectroscopy is one of the simplest and widely used techniques for the non-invasive study of biological tissues but no exact analytical solution exists for the problem of diffuse reflectance from turbid media such as biological tissues. In this work, a general treatment of the problem of diffuse reflectance from a homogeneous semi-infinite turbid medium is presented using Monte Carlo simulations. Based on the results of the Monte Carlo method, simple semi-empirical analytical solutions are developed valid for a wide range of collection geometries corresponding to various optical detector diameters. This approach may be useful for the quick and accurate modeling of diffuse reflectance from tissues.

© 2011 OSA

OCIS Codes
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.7050) Medical optics and biotechnology : Turbid media

ToC Category:
Optics of Tissue and Turbid Media

History
Original Manuscript: August 2, 2011
Revised Manuscript: November 6, 2011
Manuscript Accepted: November 8, 2011
Published: November 9, 2011

Citation
George Zonios and Aikaterini Dimou, "Modeling diffuse reflectance from homogeneous semi-infinite turbid media for biological tissue applications: a Monte Carlo study," Biomed. Opt. Express 2, 3284-3294 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-12-3284


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Reynolds, C. Johnson, and A. Ishimaru, “Diffuse reflectance from a finite blood medium: applications to the modeling of fiber optic catheters,” Appl. Opt.15(9), 2059–2067 (1976). [CrossRef] [PubMed]
  2. R. A. J. Groenhuis, H. A. Ferwerda, and J. J. Ten Bosch, “Scattering and absorption of turbid materials determined from reflection measurements. 1: theory,” Appl. Opt.22(16), 2456–2462 (1983). [CrossRef] [PubMed]
  3. A. Amelink, H. J. C. M. Sterenborg, M. P. L. Bard, and S. A. Burgers, “In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy,” Opt. Lett.29(10), 1087–1089 (2004). [CrossRef] [PubMed]
  4. R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt.46(29), 7317–7328 (2007). [CrossRef] [PubMed]
  5. T. J. Farrell, M. S. Patterson, and B. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo,” Med. Phys.19(4), 879–888 (1992). [CrossRef] [PubMed]
  6. L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed.47(2), 131–146 (1995). [CrossRef] [PubMed]
  7. R. Graaff, M. H. Koelink, F. F. M. de Mul, W. G. Zijistra, A. C. M. Dassel, and J. G. Aarnoudse, “Condensed Monte Carlo simulations for the description of light transport,” Appl. Opt.32(4), 426–434 (1993). [CrossRef] [PubMed]
  8. A. Kienle and M. S. Patterson, “Determination of the optical properties of turbid media from a single Monte Carlo simulation,” Phys. Med. Biol.41(10), 2221–2227 (1996). [CrossRef] [PubMed]
  9. T. Hayashi, Y. Kashio, and E. Okada, “Hybrid Monte Carlo-diffusion method for light propagation in tissue with a low-scattering region,” Appl. Opt.42(16), 2888–2896 (2003). [CrossRef] [PubMed]
  10. E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt.13(6), 060504 (2008). [CrossRef] [PubMed]
  11. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express17(22), 20178–20190 (2009). [CrossRef] [PubMed]
  12. N. N. Ren, J. M. Liang, X. Qu, J. F. Li, B. J. Lu, and J. Tian, “GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues,” Opt. Express18(7), 6811–6823 (2010). [CrossRef] [PubMed]
  13. T. Y. Tseng, C. Y. Chen, Y. S. Li, and K. B. Sung, “Quantification of the optical properties of two-layered turbid media by simultaneously analyzing the spectral and spatial information of steady-state diffuse reflectance spectroscopy,” Biomed. Opt. Express2(4), 901–914 (2011). [CrossRef] [PubMed]
  14. G. Zonios and A. Dimou, “Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties,” Opt. Express14(19), 8661–8674 (2006). [CrossRef] [PubMed]
  15. N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt.13(5), 050501 (2008). [CrossRef] [PubMed]
  16. M. Johns, C. A. Giller, D. C. German, and H. L. Liu, “Determination of reduced scattering coefficient of biological tissue from a needle-like probe,” Opt. Express13(13), 4828–4842 (2005). [CrossRef] [PubMed]
  17. G. Zonios, L. T. Perelman, V. M. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt.38(31), 6628–6637 (1999). [CrossRef] [PubMed]
  18. Q. Liu and N. Ramanujam, “Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media,” J. Opt. Soc. Am. A24(4), 1011–1025 (2007). [CrossRef] [PubMed]
  19. J. W. He, D. Kashyap, L. A. Trevino, H. Liu, and Y. B. Peng, “Simultaneous absolute measures of glabrous skin hemodynamic and light-scattering change in response to formalin injection in rats,” Neurosci. Lett.492(1), 59–63 (2011). [CrossRef] [PubMed]
  20. V. Sharma, J. W. He, S. Narvenkar, Y. B. Peng, and H. Liu, “Quantification of light reflectance spectroscopy and its application: determination of hemodynamics on the rat spinal cord and brain induced by electrical stimulation,” Neuroimage56(3), 1316–1328 (2011). [CrossRef] [PubMed]
  21. G. Mantis and G. Zonios, “Simple two-layer reflectance model for biological tissue applications,” Appl. Opt.48(18), 3490–3496 (2009). [CrossRef] [PubMed]
  22. G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt.13(1), 014017 (2008). [CrossRef] [PubMed]
  23. G. Zonios and A. Dimou, “Melanin optical properties provide evidence for chemical and structural disorder in vivo,” Opt. Express16(11), 8263–8268 (2008). [CrossRef] [PubMed]
  24. G. Zonios, A. Dimou, and D. Galaris, “Probing skin interaction with hydrogen peroxide using diffuse reflectance spectroscopy,” Phys. Med. Biol.53(1), 269–278 (2008). [CrossRef] [PubMed]
  25. G. Zonios and A. Dimou, “Simple two-layer reflectance model for biological tissue applications: lower absorbing layer,” Appl. Opt.49(27), 5026–5031 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited