OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 12 — Dec. 1, 2011
  • pp: 3295–3308

Quantification of cellular autofluorescence of human skin using multiphoton tomography and fluorescence lifetime imaging in two spectral detection channels

Rakesh Patalay, Clifford Talbot, Yuriy Alexandrov, Ian Munro, Mark A. A. Neil, Karsten König, Paul M. W. French, Anthony Chu, Gordon W. Stamp, and Chris Dunsby  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 12, pp. 3295-3308 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1670 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We explore the diagnostic potential of imaging endogenous fluorophores using two photon microscopy and fluorescence lifetime imaging (FLIM) in human skin with two spectral detection channels. Freshly excised benign dysplastic nevi (DN) and malignant nodular Basal Cell Carcinomas (nBCCs) were excited at 760 nm. The resulting fluorescence signal was binned manually on a cell by cell basis. This improved the reliability of fitting using a double exponential decay model and allowed the fluorescence signatures from different cell populations within the tissue to be identified and studied. We also performed a direct comparison between different diagnostic groups. A statistically significant difference between the median mean fluorescence lifetime of 2.79 ns versus 2.52 ns (blue channel, 300-500 nm) and 2.08 ns versus 1.33 ns (green channel, 500-640 nm) was found between nBCCs and DN respectively, using the Mann-Whitney U test (p < 0.01). Further differences in the distribution of fluorescence lifetime parameters and inter-patient variability are also discussed.

© 2011 OSA

OCIS Codes
(170.1870) Medical optics and biotechnology : Dermatology
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(300.6410) Spectroscopy : Spectroscopy, multiphoton
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Dermatological Applications

Original Manuscript: August 30, 2011
Revised Manuscript: October 7, 2011
Manuscript Accepted: October 13, 2011
Published: November 10, 2011

Rakesh Patalay, Clifford Talbot, Yuriy Alexandrov, Ian Munro, Mark A. A. Neil, Karsten König, Paul M. W. French, Anthony Chu, Gordon W. Stamp, and Chris Dunsby, "Quantification of cellular autofluorescence of human skin using multiphoton tomography and fluorescence lifetime imaging in two spectral detection channels," Biomed. Opt. Express 2, 3295-3308 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. König, “Clinical multiphoton tomography,” J Biophotonics1(1), 13–23 (2008). [CrossRef] [PubMed]
  2. B. R. Masters, P. T. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophys. J.72(6), 2405–2412 (1997). [CrossRef] [PubMed]
  3. K. König, A. P. Raphael, L. Lin, J. E. Grice, H. P. Soyer, H. G. Breunig, M. S. Roberts, and T. W. Prow, “Applications of multiphoton tomographs and femtosecond laser nanoprocessing microscopes in drug delivery research,” Adv. Drug Deliv. Rev.63(4-5), 388–404 (2011). [CrossRef] [PubMed]
  4. J. A. Palero, H. S. de Bruijn, A. van der Ploeg van den Heuvel, H. J. Sterenborg, and H. C. Gerritsen, “Spectrally resolved multiphoton imaging of in vivo and excised mouse skin tissues,” Biophys. J.93(3), 992–1007 (2007). [CrossRef] [PubMed]
  5. E. Dimitrow, I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. König, and M. Kaatz, “Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis,” Exp. Dermatol.18(6), 509–515 (2009). [CrossRef] [PubMed]
  6. W. Y. Sanchez, T. W. Prow, W. H. Sanchez, J. E. Grice, and M. S. Roberts, “Analysis of the metabolic deterioration of ex vivo skin from ischemic necrosis through the imaging of intracellular NAD(P)H by multiphoton tomography and fluorescence lifetime imaging microscopy,” J. Biomed. Opt.15(4), 046008 (2010). [CrossRef] [PubMed]
  7. R. Cicchi, S. Sestini, V. De Giorgi, D. Massi, T. Lotti, and F. S. Pavone, “Nonlinear laser imaging of skin lesions,” J Biophotonics1(1), 62–73 (2008). [CrossRef] [PubMed]
  8. E. Benati, V. Bellini, S. Borsari, C. Dunsby, C. Ferrari, P. French, M. Guanti, D. Guardoli, K. Koenig, G. Pellacani, G. Ponti, S. Schianchi, C. Talbot, and S. Seidenari, “Quantitative evaluation of healthy epidermis by means of multiphoton microscopy and fluorescence lifetime imaging microscopy,” Skin Res. Technol.17(3), 295–303 (2011). [CrossRef] [PubMed]
  9. J. A. Palero, A. N. Bader, H. S. de Bruijn, A. van der Ploeg van den Heuvel, H. J. C. M. Sterenborg, and H. C. Gerritsen, “In vivo monitoring of protein-bound and free NADH during ischemia by nonlinear spectral imaging microscopy,” Biomed. Opt. Express2(5), 1030–1039 (2011). [CrossRef] [PubMed]
  10. M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt.12(2), 024014 (2007). [CrossRef] [PubMed]
  11. D. Leupold, M. Scholz, G. Stankovic, J. Reda, S. Buder, R. Eichhorn, G. Wessler, M. Stücker, K. Hoffmann, J. Bauer, and C. Garbe, “The stepwise two-photon excited melanin fluorescence is a unique diagnostic tool for the detection of malignant transformation in melanocytes,” Pigment Cell Melanoma Res24(3), 438–445 (2011). [CrossRef] [PubMed]
  12. K. Koenig and I. Riemann, “High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution,” J. Biomed. Opt.8(3), 432–439 (2003). [CrossRef] [PubMed]
  13. K. Koenig and H. Schneckenburger, “Laser-induced autofluorescence for medical diagnosis,” J. Fluoresc.4(1), 17–40 (1994). [CrossRef]
  14. K. Teuchner, W. Freyer, D. Leupold, A. Volkmer, D. J. Birch, P. Altmeyer, M. Stücker, and K. Hoffmann, “Femtosecond two-photon excited fluorescence of melanin,” Photochem. Photobiol.70(2), 146–151 (1999). [PubMed]
  15. J. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, New York, 1999).
  16. A. Leray, C. Spriet, D. Trinel, R. Blossey, Y. Usson, and L. Héliot, “Quantitative comparison of polar approach versus fitting method in time domain FLIM image analysis,” Cytometry A79A(2), 149–158 (2011). [CrossRef] [PubMed]
  17. P. R. Barber, S. M. Ameer-Beg, J. D. Gilbey, R. J. Edens, I. Ezike, and B. Vojnovic, “Global and pixel kinetic data analysis for FRET detection by multi-photon time-domain FLIM,” Proc. SPIE5700, 171–181 (2005). [CrossRef]
  18. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer, Berlin, 2005).
  19. J. Paoli, M. Smedh, A. M. Wennberg, and M. B. Ericson, “Multiphoton laser scanning microscopy on non-melanoma skin cancer: morphologic features for future non-invasive diagnostics,” J. Invest. Dermatol.128(5), 1248–1255 (2008). [CrossRef] [PubMed]
  20. E. Dimitrow, M. Ziemer, M. J. Koehler, J. Norgauer, K. König, P. Elsner, and M. Kaatz, “Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma,” J. Invest. Dermatol.129(7), 1752–1758 (2009). [CrossRef] [PubMed]
  21. A. Ehlers, I. Riemann, M. Stark, and K. König, “Multiphoton fluorescence lifetime imaging of human hair,” Microsc. Res. Tech.70(2), 154–161 (2007). [CrossRef] [PubMed]
  22. K. Hoffmann, M. Stücker, P. Altmeyer, K. Teuchner, and D. Leupold, “Selective femtosecond pulse-excitation of melanin fluorescence in tissue,” J. Invest. Dermatol.116(4), 629–630 (2001). [CrossRef] [PubMed]
  23. R. Eichhorn, G. Wessler, M. Scholz, D. Leupold, G. Stankovic, S. Buder, M. Stücker, and K. Hoffmann, “Early diagnosis of melanotic melanoma based on laser-induced melanin fluorescence,” J. Biomed. Opt.14(3), 034033 (2009). [CrossRef] [PubMed]
  24. H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, “Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy,” J. Biol. Chem.280(26), 25119–25126 (2005). [CrossRef] [PubMed]
  25. P. K. Gupta, S. K. Majumder, and A. Uppal, “Breast cancer diagnosis using N2 laser excited autofluorescence spectroscopy,” Lasers Surg. Med.21(5), 417–422 (1997). [CrossRef] [PubMed]
  26. K. T. Schomacker, J. K. Frisoli, C. C. Compton, T. J. Flotte, J. M. Richter, N. S. Nishioka, and T. F. Deutsch, “Ultraviolet laser-induced fluorescence of colonic tissue: basic biology and diagnostic potential,” Lasers Surg. Med.12(1), 63–78 (1992). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 5 Fig. 2
Fig. 3 Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited