OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 12 — Dec. 1, 2011
  • pp: 3321–3333

Characterization of optical properties of ZnO nanoparticles for quantitative imaging of transdermal transport

Zhen Song, Timothy A. Kelf, Washington H. Sanchez, Michael S. Roberts, Jaro Rička, Martin Frenz, and Andrei V. Zvyagin  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 12, pp. 3321-3333 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1354 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Widespread applications of ZnO nanoparticles (NP) in sun-blocking cosmetic products have raised safety concerns related to their potential transdermal penetration and resultant cytotoxicity. Nonlinear optical microscopy provides means for high-contrast imaging of ZnO NPs lending in vitro and in vivo assessment of the nanoparticle uptake in skin, provided their nonlinear optical properties are characterized. We report on this characterization using ZnO NP commercial product, Zinclear, mean-sized 21 nm. Two-photon action cross-section of this bandgap material (Ebg = 3.37 eV, λbg = 370 nm) measured by two techniques yielded consistent results of η ZnO σ ZnO ( 2ph ) = 6.2 ± 0.8 μGM at 795 nm, and 32 ± 6 μGM at 770 nm per unit ZnO crystal cell, with the quantum efficiency of η ZnO = (0.9 ± 0.2) %. In order to demonstrate the quantitative imaging, nonlinear optical microscopy images of the excised human skin topically treated with Zinclear were acquired and processed using σ ZnO ( 2ph ) and η ZnO values yielding nanoparticle concentration map in skin. Accumulations of Zinclear ZnO nanoparticles were detected only on the skin surface and in skin folds reaching concentrations of 800 NPs per μm3.

© 2011 OSA

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(250.5230) Optoelectronics : Photoluminescence
(160.4236) Materials : Nanomaterials
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Dermatological Applications

Original Manuscript: October 7, 2011
Revised Manuscript: November 6, 2011
Manuscript Accepted: November 8, 2011
Published: November 15, 2011

Zhen Song, Timothy A. Kelf, Washington H. Sanchez, Michael S. Roberts, Jaro Rička, Martin Frenz, and Andrei V. Zvyagin, "Characterization of optical properties of ZnO nanoparticles for quantitative imaging of transdermal transport," Biomed. Opt. Express 2, 3321-3333 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films,” Appl. Phys. Lett.72(25), 3270–3272 (1998). [CrossRef]
  2. S. E. Cross, B. Innes, M. S. Roberts, T. Tsuzuki, T. A. Robertson, and P. McCormick, “Human skin penetration of sunscreen nanoparticles: in-vitro assessment of a novel micronized zinc oxide formulation,” Skin Pharmacol. Physiol.20(3), 148–154 (2007). [CrossRef] [PubMed]
  3. F. Pflücker, V. Wendel, H. Hohenberg, E. Gärtner, T. Will, S. Pfeiffer, R. Wepf, and H. Gers-Barlag, “The human stratum corneum layer: an effective barrier against dermal uptake of different forms of topically applied micronised titanium dioxide,” Skin Pharmacol. Appl. Skin Physiol.14(Suppl 1), 92–97 (2001). [CrossRef] [PubMed]
  4. Zs. Kertesz, Z. Szikszai, and A. Z. Kiss, “Quality of skin as a barrier to ultra-fine particles. Contribution of the IBA Group to the Nanoderm EU-5 Project in 2003-2004,” in ATOMKI Annual Report 2004 (Institute of Nuclear Research of the Hungarian Academy of Sciences, 2005), p. 70.
  5. T. Xia, M. Kovochich, M. Liong, L. Mädler, B. Gilbert, H. B. Shi, J. I. Yeh, J. I. Zink, and A. E. Nel, “Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties,” ACS Nano2(10), 2121–2134 (2008). [CrossRef] [PubMed]
  6. Y. B. Zhang, W. Chen, S. P. Wang, Y. F. Liu, and C. Pope, “Phototoxicity of zinc oxide nanoparticle conjugates in human ovarian cancer NIH: OVCAR-3 cells,” J. Biomed. Nanotechnol.4(4), 432–438 (2008). [CrossRef]
  7. C. G. J. Hayden, S. E. Cross, C. Anderson, N. A. Saunders, and M. S. Roberts, “Sunscreen penetration of human skin and related keratinocyte toxicity after topical application,” Skin Pharmacol. Physiol.18(4), 170–174 (2005). [CrossRef] [PubMed]
  8. B. C. Heng, X. X. Zhao, S. J. Xiong, K. W. Ng, F. Y.-C. Boey, and J. S.-C. Loo, “Toxicity of zinc oxide (ZnO) nanoparticles on human bronchial epithelial cells (BEAS-2B) is accentuated by oxidative stress,” Food Chem. Toxicol.48(6), 1762–1766 (2010). [CrossRef] [PubMed]
  9. C. Hanley, A. Thurber, C. Hanna, A. Punnoose, J. H. Zhang, and D. G. Wingett, “The Influences of Cell Type and ZnO Nanoparticle Size on Immune Cell Cytotoxicity and Cytokine Induction,” Nanoscale Res. Lett.4(12), 1409–1420 (2009). [CrossRef] [PubMed]
  10. A. V. Zvyagin, X. Zhao, A. Gierden, W. H. Sanchez, J. A. Ross, and M. S. Roberts, “Imaging of zinc oxide nanoparticle penetration in human skin in vitro and in vivo,” J. Biomed. Opt.13(6), 064031 (2008). [CrossRef] [PubMed]
  11. M. J. Osmond and M. J. McCall, “Zinc oxide nanoparticles in modern sunscreens: an analysis of potential exposure and hazard,” Nanotoxicology4(1), 15–41 (2010). [CrossRef] [PubMed]
  12. M. S. Roberts, M. J. Roberts, T. A. Robertson, W. Sanchez, C. Thörling, Y. Zou, X. Zhao, W. Becker, and A. V. Zvyagin, “In vitro and in vivo imaging of xenobiotic transport in human skin and in the rat liver,” J Biophotonics1(6), 478–493 (2008). [CrossRef] [PubMed]
  13. A. P. Popov, A. V. Zvyagin, J. Lademann, M. S. Roberts, W. Sanchez, A. V. Priezzhev, and R. Myllylä, “Designing inorganic light-protective skin nanotechnology products,” J Biomed Nanotechnol6(5), 432–451 (2010). [CrossRef] [PubMed]
  14. L. L. Lin, J. E. Grice, M. K. Butler, A. V. Zvyagin, W. Becker, T. A. Robertson, H. P. Soyer, M. S. Roberts, and T. W. Prow, “Time-correlated single photon counting for simultaneous monitoring of zinc oxide nanoparticles and NAD(P)H in intact and barrier-disrupted volunteer skin,” Pharm. Res.28(11), 2920–2930 (2011). [CrossRef] [PubMed]
  15. B. Gulson, M. McCall, M. Korsch, L. Gomez, P. Casey, Y. Oytam, A. Taylor, M. McCulloch, J. Trotter, L. Kinsley, and G. Greenoak, “Small amounts of zinc from zinc oxide particles in sunscreens applied outdoors are absorbed through human skin,” Toxicol. Sci.118(1), 140–149 (2010). [CrossRef] [PubMed]
  16. B. Nanda and R. S. R. Murthy, “Preparation and characterization of chitosan lactate nanoparticles for the nasal delivery of enalaprilat,” J. Biomed. Nanotech.3(1), 45–51 (2007). [CrossRef]
  17. A. P. Popov, J. Lademann, A. V. Priezzhev, and R. Myllylä, “Effect of size of TiO2 nanoparticles embedded into stratum corneum on ultraviolet-A and ultraviolet-B sun-blocking properties of the skin,” J. Biomed. Opt.10(6), 064037 (2005). [CrossRef] [PubMed]
  18. J. Lademann, H. J. Weigmann, C. Rickmeyer, H. Barthelmes, H. Schaefer, G. Mueller, and W. Sterry, “Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice,” Skin Pharmacol. Appl. Skin Physiol.12(5), 247–256 (1999). [CrossRef] [PubMed]
  19. B. R. Masters and P. T. C. So, “Confocal microscopy and multi-photon excitation microscopy of human skin in vivo,” Opt. Express8(1), 2–10 (2001). [CrossRef] [PubMed]
  20. R. M. Williams, A. Flesken-Nikitin, A. Y. Nikitin, and W. R. Zipfel, “Multiphoton microscopy of intrinsic tissue emissions for cancer research,” FASEB J.21, A601 (2007).
  21. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol.21(11), 1369–1377 (2003). [CrossRef] [PubMed]
  22. B. R. Masters and P. T. C. So, “Multi-photon excitation microscopy and confocal microscopy imaging of in vivo human skin: A comparison,” Microsc. Microanal.5(4), 282–289 (1999). [PubMed]
  23. J. A. Palero, H. S. de Bruijn, A. van der Ploeg van den Heuvel, H. J. Sterenborg, and H. C. Gerritsen, “Spectrally resolved multiphoton imaging of in vivo and excised mouse skin tissues,” Biophys. J.93(3), 992–1007 (2007). [CrossRef] [PubMed]
  24. D. C. Dai, S. J. Xu, S. L. Shi, M. H. Xie, and C. M. Che, “Efficient multiphoton-absorption-induced luminescence in single-crystalline ZnO at room temperature,” Opt. Lett.30(24), 3377–3379 (2005). [CrossRef] [PubMed]
  25. Z.-W. Dong, C.-F. Zhang, G.-J. You, X.-Q. Qiu, K.-J. Liu, Y.-L. Yan, and S.-X. Qian, “Multi-photon excitation UV emission by femtosecond pulses and nonlinearity in ZnO single crystal,” J. Phys. Condens. Matter19(21), 216202 (2007). [CrossRef]
  26. X. J. Zhang, W. Ji, and S. H. Tang, “Determination of optical nonlinearities and carrier lifetime in ZnO,” J. Opt. Soc. Am. B14(8), 1951–1955 (1997). [CrossRef]
  27. S. K. Das, M. Biswas, D. Byrne, M. Bock, E. McGlynn, M. Breusing, and R. Grunwald, “Multiphoton-absorption induced ultraviolet luminescence of ZnO nanorods using low-energy femtosecond pulses,” J. Appl. Phys.108(4), 043107–043112 (2010). [CrossRef]
  28. C. Y. Liu, B. P. Zhang, N. T. Binh, and Y. Segawa, “Second harmonic generation in ZnO thin films fabricated by metalorganic chemical vapor deposition,” Opt. Commun.237(1-3), 65–70 (2004). [CrossRef]
  29. L. Guo, S. H. Yang, C. L. Yang, P. Yu, J. N. Wang, W. K. Ge, and G. K. L. Wong, “Highly monodisperse polymer-capped ZnO nanoparticles: Preparation and optical properties,” Appl. Phys. Lett.76(20), 2901–2903 (2000). [CrossRef]
  30. L. Irimpan, V. P. N. Nampoori, P. Radhakrishnan, B. Krishnan, and A. Deepthy, “Size-dependent enhancement of nonlinear optical properties in nanocolloids of ZnO,” J. Appl. Phys.103(3), 033105 (2008). [CrossRef]
  31. L. Irimpan, A. Deepthy, B. Krishnan, L. M. Kukreja, V. P. N. Nampoori, and P. Radhakrishnan, “Effect of self assembly on the nonlinear optical characteristics of ZnO thin films,” Opt. Commun.281(10), 2938–2943 (2008). [CrossRef]
  32. M. H. Majles Ara, Z. Dehghani, and S. Saievar Iranizad, “Synthesis, characterization and single-beam Z-scan measurement of the third-order optical nonlinearities of ZnO nano-particles,” Int. J. Mod. Phys. B22(18 & 19), 3165–3171 (2008). [CrossRef]
  33. M. G. Vivas, T. Shih, T. Voss, E. Mazur, and C. R. Mendonca, “Nonlinear spectra of ZnO: reverse saturable, two- and three-photon absorption,” Opt. Express18(9), 9628–9633 (2010). [CrossRef] [PubMed]
  34. J. H. Lin, Y. J. Chen, H. Y. Lin, and W. F. Hsieh, “Two-photon resonance assisted huge nonlinear refraction and absorption in ZnO thin films,” J. Appl. Phys.97(3), 033526 (2005). [CrossRef]
  35. T. Tsuzuki and P. G. McCormick, “ZnO nanoparticles synthesised by mechanochemical processing,” Scr. Mater.44(8-9), 1731–1734 (2001). [CrossRef]
  36. M. Kauert, P. C. Stoller, M. Frenz, and J. Rička, “Absolute measurement of molecular two-photon absorption cross-sections using a fluorescence saturation technique,” Opt. Express14(18), 8434–8447 (2006). [CrossRef] [PubMed]
  37. M. Schubnell, I. Kamber, and P. Beaud, “Photochemistry at high temperatures - Potential of ZnO as a high temperature photocatalyst,” Appl. Phys., A Mater. Sci. Process.64(1), 109–113 (1997). [CrossRef]
  38. T. M. Stachelek, T. A. Pazoha, W. M. McClain, and R. P. Drucker, ““Detection and assignment of the “phantom” photochemical singlet of trans-stilbene by two-photon excitation,” J. Chem. Phys.66(10), 4540–4543 (1977). [CrossRef]
  39. M. A. Albota, C. Xu, and W. W. Webb, “Two-photon fluorescence excitation cross sections of biomolecular probes from 690 to 960 nm,” Appl. Opt.37(31), 7352–7356 (1998). [CrossRef] [PubMed]
  40. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, “Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation,” Proc. Natl. Acad. Sci. U.S.A.100(12), 7075–7080 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited