OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 12 — Dec. 1, 2011
  • pp: 3363–3366

Noninvasive detection of filaggrin gene mutations using Raman spectroscopy

Francisco J. González, Rodrigo Valdes-Rodríguez, Miguel G. Ramírez-Elías, Claudio Castillo-Martínez, Victor M. Saavedra-Alanis, and Benjamín Moncada  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 12, pp. 3363-3366 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (804 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Knowledge of the existence of filaggrin (FLG) gene mutations might be helpful for a subclassification of patients with atopic dermatitis (AD) which can be used to introduce individualized treatments. In this work the filaggrin content in the skin is assessed using Raman spectroscopy and the results are compared to FLG genotyping of Mexican-mestizo patients. Results showed that the 2282del4 and R501X mutations present in the European population but absent in people of Asian or African descent are also present in the Mexican-mestizo population. The results also showed that patients with filaggrin gene mutations presented lower filaggrin concentrations measured using the vector correlation of their skin Raman spectra and a fixed spectrum of pure human recombinant filaggrin, these results indicate that Raman spectroscopy may be used as a noninvasive tool to detect FLG gene mutations.

© 2011 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.1870) Medical optics and biotechnology : Dermatology
(170.5660) Medical optics and biotechnology : Raman spectroscopy

ToC Category:
Dermatological Applications

Original Manuscript: August 8, 2011
Revised Manuscript: October 24, 2011
Manuscript Accepted: November 1, 2011
Published: November 28, 2011

Francisco J. González, Rodrigo Valdes-Rodríguez, Miguel G. Ramírez-Elías, Claudio Castillo-Martínez, Victor M. Saavedra-Alanis, and Benjamín Moncada, "Noninvasive detection of filaggrin gene mutations using Raman spectroscopy," Biomed. Opt. Express 2, 3363-3366 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Kezic, P. M. J. H. Kemperman, E. S. Koster, C. M. de Jongh, H. B. Thio, L. E. Campbell, A. D. Irvine, W. H. McLean, G. J. Puppels, and P. J. Caspers, “Loss-of-function mutations in the filaggrin gene lead to reduced level of natural moisturizing factor in the stratum corneum,” J. Invest. Dermatol.128(8), 2117–2119 (2008). [CrossRef] [PubMed]
  2. N. Novak and D. Simon, “Atopic dermatitis - from new pathophysiologic insights to individualized therapy,” Allergy66(7), 830–839 (2011). [CrossRef] [PubMed]
  3. G. M. O’Regan, P. M. Kemperman, A. Sandilands, H. Chen, L. E. Campbell, K. Kroboth, R. Watson, M. Rowland, G. J. Puppels, W. H. I. McLean, P. J. Caspers, and A. D. Irvine, “Raman profiles of the stratum corneum define 3 filaggrin genotype-determined atopic dermatitis endophenotypes,” J. Allergy Clin. Immunol.126(3), 574–580.e1 (2010). [CrossRef] [PubMed]
  4. F. J. González, J. Alda, B. Moreno-Cruz, M. Martínez-Escanamé, M. G. Ramírez-Elías, B. Torres-Álvarez, and B. Moncada, “Use of Raman spectroscopy for the early detection of filaggrin-related atopic dermatitis,” Skin Res. Technol.17(1), 45–50 (2011). [CrossRef] [PubMed]
  5. J. Zhao, H. Lui, D. I. McLean, and H. Zeng, “Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy,” Appl. Spectrosc.61(11), 1225–1232 (2007). [CrossRef] [PubMed]
  6. F. J. D. Smith, A. D. Irvine, A. Terron-Kwiatkowski, A. Sandilands, L. E. Campbell, Y. Zhao, H. Liao, A. T. Evans, D. R. Goudie, S. Lewis-Jones, G. Arseculeratne, C. S. Munro, A. Sergeant, G. O’Regan, S. J. Bale, J. G. Compton, J. J. DiGiovanna, R. B. Presland, P. Fleckman, and W. H. I. McLean, “Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris,” Nat. Genet.38(3), 337–342 (2006). [CrossRef] [PubMed]
  7. I. Marenholz, R. Nickel, F. Rüschendorf, F. Schulz, J. Esparza-Gordillo, T. Kerscher, C. Grüber, S. Lau, M. Worm, T. Keil, M. Kurek, E. Zaluga, U. Wahn, and Y.-A. Lee, “Filaggrin loss-of-function mutations predispose to phenotypes involved in the atopic march,” J. Allergy Clin. Immunol.118(4), 866–871 (2006). [CrossRef] [PubMed]
  8. C. N. Palmer, A. D. Irvine, A. Terron-Kwiatkowski, Y. Zhao, H. Liao, S. P. Lee, D. R. Goudie, A. Sandilands, L. E. Campbell, F. J. D. Smith, G. M. O’Regan, R. M. Watson, J. E. Cecil, S. J. Bale, J. G. Compton, J. J. DiGiovanna, P. Fleckman, S. Lewis-Jones, G. Arseculeratne, A. Sergeant, C. S. Munro, B. El Houate, K. McElreavey, L. B. Halkjaer, H. Bisgaard, S. Mukhopadhyay, and W. H. I. McLean, “Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis,” Nat. Genet.38(4), 441–446 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited