OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 12 — Dec. 1, 2011
  • pp: 3367–3386

Spatiotemporal relations of primary sensorimotor and secondary motor activation patterns mapped by NIR imaging

Bilal Khan, Pankaj Chand, and George Alexandrakis  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 12, pp. 3367-3386 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1812 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Functional near infrared (fNIR) imaging was used to identify spatiotemporal relations between spatially distinct cortical regions activated during various hand and arm motion protocols. Imaging was performed over a field of view (FOV, 12 x 8.4 cm) including the secondary motor, primary sensorimotor, and the posterior parietal cortices over a single brain hemisphere. This is a more extended FOV than typically used in current fNIR studies. Three subjects performed four motor tasks that induced activation over this extended FOV. The tasks included card flipping (pronation and supination) that, to our knowledge, has not been performed in previous functional magnetic resonance imaging (fMRI) or fNIR studies. An earlier rise and a longer duration of the hemodynamic activation response were found in tasks requiring increased physical or mental effort. Additionally, analysis of activation images by cluster component analysis (CCA) demonstrated that cortical regions can be grouped into clusters, which can be adjacent or distant from each other, that have similar temporal activation patterns depending on whether the performed motor task is guided by visual or tactile feedback. These analyses highlight the future potential of fNIR imaging to tackle clinically relevant questions regarding the spatiotemporal relations between different sensorimotor cortex regions, e.g. ones involved in the rehabilitation response to motor impairments.

© 2011 OSA

OCIS Codes
(100.2960) Image processing : Image analysis
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(300.6340) Spectroscopy : Spectroscopy, infrared
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Neuroscience and Brain Imaging

Original Manuscript: July 7, 2011
Revised Manuscript: September 20, 2011
Manuscript Accepted: November 16, 2011
Published: November 29, 2011

Bilal Khan, Pankaj Chand, and George Alexandrakis, "Spatiotemporal relations of primary sensorimotor and secondary motor activation patterns mapped by NIR imaging," Biomed. Opt. Express 2, 3367-3386 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Franceschini, S. Fantini, J. H. Thompson, J. P. Culver, and D. A. Boas, “Hemodynamic evoked response of the sensorimotor cortex measured noninvasively with near-infrared optical imaging,” Psychophysiology40(4), 548–560 (2003). [CrossRef] [PubMed]
  2. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol.50(4), R1–R43 (2005). [CrossRef] [PubMed]
  3. Y. Xu, H. L. Graber, and R. L. Barbour, “Image correction algorithm for functional three-dimensional diffuse optical tomography brain imaging,” Appl. Opt.46(10), 1693–1704 (2007). [CrossRef] [PubMed]
  4. D. H. Burns, S. Rosendahl, D. Bandilla, O. C. Maes, H. M. Chertkow, and H. M. Schipper, “Near-infrared spectroscopy of blood plasma for diagnosis of sporadic Alzheimer’s disease,” J. Alzheimers Dis.17(2), 391–397 (2009). [PubMed]
  5. B. Khan, F. Tian, K. Behbehani, M. I. Romero, M. R. Delgado, N. J. Clegg, L. Smith, D. Reid, H. Liu, and G. Alexandrakis, “Identification of abnormal motor cortex activation patterns in children with cerebral palsy by functional near-infrared spectroscopy,” J. Biomed. Opt.15(3), 036008 (2010). [CrossRef] [PubMed]
  6. H. Ohta, B. Yamagata, H. Tomioka, T. Takahashi, M. Yano, K. Nakagome, and M. Mimura, “Hypofrontality in panic disorder and major depressive disorder assessed by multi-channel near-infrared spectroscopy,” Depress. Anxiety25(12), 1053–1059 (2008). [CrossRef] [PubMed]
  7. G. Strangman, R. Goldstein, S. L. Rauch, and J. Stein, “Near-infrared spectroscopy and imaging for investigating stroke rehabilitation: test-retest reliability and review of the literature,” Arch. Phys. Med. Rehabil.87(12Suppl 2), 12–19 (2006). [CrossRef] [PubMed]
  8. K. Takeda, Y. Gomi, I. Imai, N. Shimoda, M. Hiwatari, and H. Kato, “Shift of motor activation areas during recovery from hemiparesis after cerebral infarction: a longitudinal study with near-infrared spectroscopy,” Neurosci. Res.59(2), 136–144 (2007). [CrossRef] [PubMed]
  9. C. Terborg, K. Gröschel, A. Petrovitch, T. Ringer, S. Schnaudigel, O. W. Witte, and A. Kastrup, “Noninvasive assessment of cerebral perfusion and oxygenation in acute ischemic stroke by near-infrared spectroscopy,” Eur. Neurol.62(6), 338–343 (2009). [CrossRef] [PubMed]
  10. J. B. Zeller, M. J. Herrmann, A. C. Ehlis, T. Polak, and A. J. Fallgatter, “Altered parietal brain oxygenation in Alzheimer’s disease as assessed with near-infrared spectroscopy,” Am. J. Geriatr. Psychiatry18(5), 433–441 (2010). [CrossRef] [PubMed]
  11. J. Azpiroz, F. A. Barrios, M. Carrillo, R. Carrillo, A. Cerrato, J. Hernandez, R. S. Leder, A. O. Rodriguez, and P. Salgado, “Game motivated and constraint induced therapy in late stroke with fMRI studies pre and post therapy,” in 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2005 (IEEE, 2005), Vols. 1–7, pp. 3695–3698.
  12. F. Hamzei, J. Liepert, C. Dettmers, C. Weiller, and M. Rijntjes, “Two different reorganization patterns after rehabilitative therapy: an exploratory study with fMRI and TMS,” Neuroimage31(2), 710–720 (2006). [CrossRef] [PubMed]
  13. C. H. Juenger, M. Linder-Lucht, M. Wilke, S. Berweck, V. Mall, and M. Staudt, “Neuromodulation by constraint-induced movement therapy (CIMT) in congenital hemiparesis: an fMRI study,” Eur. J. Pediatr.166, 280–9999 (2007).
  14. H. Juenger, M. Linder-Lucht, M. Walther, S. Berweck, V. Mall, and M. Staudt, “Cortical neuromodulation by constraint-induced movement therapy in congenital hemiparesis: an FMRI study,” Neuropediatrics38(3), 130–136 (2007). [CrossRef] [PubMed]
  15. T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage29(2), 368–382 (2006). [CrossRef] [PubMed]
  16. G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage17(2), 719–731 (2002). [CrossRef] [PubMed]
  17. S. C. Bunce, M. Izzetoglu, K. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared spectroscopy,” IEEE Eng. Med. Biol. Mag.25(4), 54–62 (2006). [CrossRef] [PubMed]
  18. K. Izzetoglu, S. Bunce, M. Izzetoglu, B. Onaral, and K. Pourrezaei, “Functional near-infrared neuroimaging,” Conf. Proc. IEEE Eng. Med. Biol. Soc.7, 5333–5336 (2004). [PubMed]
  19. M. Izzetoglu, A. Devaraj, S. Bunce, and B. Onaral, “Motion artifact cancellation in NIR spectroscopy using Wiener filtering,” IEEE Trans. Biomed. Eng.52(5), 934–938 (2005). [CrossRef] [PubMed]
  20. M. A. Franceschini, D. K. Joseph, T. J. Huppert, S. G. Diamond, and D. A. Boas, “Diffuse optical imaging of the whole head,” J. Biomed. Opt.11(5), 054007 (2006). [CrossRef] [PubMed]
  21. I. Miyai, H. Yagura, I. Oda, I. Konishi, H. Eda, T. Suzuki, and K. Kubota, “Premotor cortex is involved in restoration of gait in stroke,” Ann. Neurol.52(2), 188–194 (2002). [CrossRef] [PubMed]
  22. M. Hatakenaka, I. Miyai, M. Mihara, S. Sakoda, and K. Kubota, “Frontal regions involved in learning of motor skill--A functional NIRS study,” Neuroimage34(1), 109–116 (2007). [CrossRef] [PubMed]
  23. T. Ikegami and G. Taga, “Decrease in cortical activation during learning of a multi-joint discrete motor task,” Exp. Brain Res.191(2), 221–236 (2008). [CrossRef] [PubMed]
  24. S. P. Koch, C. Habermehl, J. Mehnert, C. H. Schmitz, S. Holtze, A. Villringer, J. Steinbrink, and H. Obrig, “High-resolution optical functional mapping of the human somatosensory cortex,” Front Neuroenergetics2, 12 (2010). [PubMed]
  25. L. Holper, F. Scholkmann, D. E. Shalóm, and M. Wolf, “Extension of mental preparation positively affects motor imagery as compared to motor execution: A functional near-infrared spectroscopy study,” Cortex (2011). [CrossRef] [PubMed]
  26. L. Holper, M. Biallas, and M. Wolf, “Task complexity relates to activation of cortical motor areas during uni- and bimanual performance: a functional NIRS study,” Neuroimage46(4), 1105–1113 (2009). [CrossRef] [PubMed]
  27. A. Maki, Y. Yamashita, Y. Ito, E. Watanabe, Y. Mayanagi, and H. Koizumi, “Spatial and temporal analysis of human motor activity using noninvasive NIR topography,” Med. Phys.22(12), 1997–2005 (1995). [CrossRef] [PubMed]
  28. H. Sato, Y. Fuchino, M. Kiguchi, T. Katura, A. Maki, T. Yoro, and H. Koizumi, “Intersubject variability of near-infrared spectroscopy signals during sensorimotor cortex activation,” J. Biomed. Opt.10(4), 044001 (2005). [CrossRef] [PubMed]
  29. V. Toronov, M. A. Franceschini, M. Filiaci, S. Fantini, M. Wolf, A. Michalos, and E. Gratton, “Near-infrared study of fluctuations in cerebral hemodynamics during rest and motor stimulation: temporal analysis and spatial mapping,” Med. Phys.27(4), 801–815 (2000). [CrossRef] [PubMed]
  30. S. Chen, C. A. Bouman, and M. J. Lowe, “Clustered components analysis for functional MRI,” IEEE Trans. Med. Imaging23(1), 85–98 (2004). [CrossRef] [PubMed]
  31. Q. Zhang, E. N. Brown, and G. E. Strangman, “Adaptive filtering to reduce global interference in evoked brain activity detection: a human subject case study,” J. Biomed. Opt.12(6), 064009 (2007). [CrossRef] [PubMed]
  32. Q. Zhang, G. E. Strangman, and G. Ganis, “Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: how well and when does it work?” Neuroimage45(3), 788–794 (2009). [CrossRef] [PubMed]
  33. G. Morren, M. Wolf, P. Lemmerling, U. Wolf, J. H. Choi, E. Gratton, L. De Lathauwer, and S. Van Huffel, “Detection of fast neuronal signals in the motor cortex from functional near infrared spectroscopy measurements using independent component analysis,” Med. Biol. Eng. Comput.42(1), 92–99 (2004). [CrossRef] [PubMed]
  34. A. F. Abdelnour and T. Huppert, “Real-time imaging of human brain function by near-infrared spectroscopy using an adaptive general linear model,” Neuroimage46(1), 133–143 (2009). [CrossRef] [PubMed]
  35. Y. Zhang, D. H. Brooks, M. A. Franceschini, and D. A. Boas, “Eigenvector-based spatial filtering for reduction of physiological interference in diffuse optical imaging,” J. Biomed. Opt.10(1), 011014 (2005). [CrossRef] [PubMed]
  36. C. Julien, “The enigma of Mayer waves: Facts and models,” Cardiovasc. Res.70(1), 12–21 (2006). [CrossRef] [PubMed]
  37. S. Kohno, I. Miyai, A. Seiyama, I. Oda, A. Ishikawa, S. Tsuneishi, T. Amita, and K. Shimizu, “Removal of the skin blood flow artifact in functional near-infrared spectroscopic imaging data through independent component analysis,” J. Biomed. Opt.12(6), 062111 (2007). [CrossRef] [PubMed]
  38. F. C. Robertson, T. S. Douglas, and E. M. Meintjes, “Motion artifact removal for functional near infrared spectroscopy: a comparison of methods,” IEEE Trans. Biomed. Eng.57(6), 1377–1387 (2010). [CrossRef] [PubMed]
  39. D. D. Dorfman, K. S. Berbaum, and C. E. Metz, “Receiver operating characteristic rating analysis. Generalization to the population of readers and patients with the jackknife method,” Invest. Radiol.27(9), 723–731 (1992). [CrossRef] [PubMed]
  40. T. J. Huppert, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain,” Appl. Opt.48(10), D280–D298 (2009). [CrossRef] [PubMed]
  41. B. Brooksby, S. Srinivasan, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, J. Weaver, C. Kogel, and S. P. Poplack, “Spectral priors improve near-infrared diffuse tomography more than spatial priors,” Opt. Lett.30(15), 1968–1970 (2005). [CrossRef] [PubMed]
  42. A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography,” Opt. Lett.29(3), 256–258 (2004). [CrossRef] [PubMed]
  43. K. Baudendistel, L. R. Schad, M. Friedlinger, F. Wenz, J. Schröder, and W. J. Lorenz, “Postprocessing of functional MRI data of motor cortex stimulation measured with a standard 1.5 T imager,” Magn. Reson. Imaging13(5), 701–707 (1995). [CrossRef] [PubMed]
  44. A. K. Singh and I. Dan, “Exploring the false discovery rate in multichannel NIRS,” Neuroimage33(2), 542–549 (2006). [CrossRef] [PubMed]
  45. D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy,” Neuroimage23(Suppl 1), S275–S288 (2004). [CrossRef] [PubMed]
  46. P. A. Gelnar, B. R. Krauss, P. R. Sheehe, N. M. Szeverenyi, and A. V. Apkarian, “A comparative fMRI study of cortical representations for thermal painful, vibrotactile, and motor performance tasks,” Neuroimage10(4), 460–482 (1999). [CrossRef] [PubMed]
  47. M. Lepage, G. Beaudoin, C. Boulet, I. O’Brien, W. Marcantoni, P. Bourgouin, and F. Richer, “Frontal cortex and the programming of repetitive tapping movements in man: lesion effects and functional neuroimaging,” Brain Res. Cogn. Brain Res.8(1), 17–25 (1999). [CrossRef] [PubMed]
  48. M. S. Khorrami, S. H. Faro, A. Seshadri, S. Moonat, J. Lidicker, B. L. Hershey, and F. B. Mohamed, “Functional MRI of sensory motor cortex: comparison between finger-to-thumb and hand squeeze tasks,” J. Neuroimaging21(3), 236–240 (2011). [CrossRef] [PubMed]
  49. E. Azañón, M. R. Longo, S. Soto-Faraco, and P. Haggard, “The posterior parietal cortex remaps touch into external space,” Curr. Biol.20(14), 1304–1309 (2010). [CrossRef] [PubMed]
  50. G. S. Dhillon, S. M. Lawrence, D. T. Hutchinson, and K. W. Horch, “Residual function in peripheral nerve stumps of amputees: implications for neural control of artificial limbs,” J. Hand Surg. Am.29(4), 605–615, discussion 616–618 (2004). [CrossRef] [PubMed]
  51. G. Lundborg, “Commentary: residual function in peripheral nerve stumps for amputees,” Hand Surg. Am.29(4), 616–618 (2004). [CrossRef]
  52. M. J. Donahue, H. Hoogduin, S. M. Smith, J. C. Siero, M. Chappell, N. Petridou, P. Jezzard, P. R. Luijten, and J. Hendrikse, “Spontaneous blood oxygenation level-dependent fMRI signal is modulated by behavioral state and correlates with evoked response in sensorimotor cortex: A 7.0-T fMRI study,” Hum. Brain Mapp.n/a (2011). [CrossRef] [PubMed]
  53. M. P. Deiber, V. Ibañez, N. Sadato, and M. Hallett, “Cerebral structures participating in motor preparation in humans: a positron emission tomography study,” J. Neurophysiol.75(1), 233–247 (1996). [PubMed]
  54. S. Van Oostende, P. Van Hecke, S. Sunaert, B. Nuttin, and G. Marchal, “FMRI studies of the supplementary motor area and the premotor cortex,” Neuroimage6(3), 181–190 (1997). [CrossRef] [PubMed]
  55. M. F. Rushworth, H. Johansen-Berg, S. M. Göbel, and J. T. Devlin, “The left parietal and premotor cortices: motor attention and selection,” Neuroimage20(Suppl 1), S89–S100 (2003). [CrossRef] [PubMed]
  56. F. Bremmer, A. Schlack, N. J. Shah, O. Zafiris, M. Kubischik, K. Hoffmann, K. Zilles, and G. R. Fink, “Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys,” Neuron29(1), 287–296 (2001). [CrossRef] [PubMed]
  57. J. P. Kuhtz-Buschbeck, R. Gilster, S. Wolff, S. Ulmer, H. Siebner, and O. Jansen, “Brain activity is similar during precision and power gripping with light force: an fMRI study,” Neuroimage40(4), 1469–1481 (2008). [CrossRef] [PubMed]
  58. H. Burton, N. S. Abend, A. M. MacLeod, R. J. Sinclair, A. Z. Snyder, and M. E. Raichle, “Tactile attention tasks enhance activation in somatosensory regions of parietal cortex: a positron emission tomography study,” Cereb. Cortex9(7), 662–674 (1999). [CrossRef] [PubMed]
  59. V. E. Gountouna, D. E. Job, A. M. McIntosh, T. W. Moorhead, G. K. Lymer, H. C. Whalley, J. Hall, G. D. Waiter, D. Brennan, D. J. McGonigle, T. S. Ahearn, J. Cavanagh, B. Condon, D. M. Hadley, I. Marshall, A. D. Murray, J. D. Steele, J. M. Wardlaw, and S. M. Lawrie, “Functional Magnetic Resonance Imaging (fMRI) reproducibility and variance components across visits and scanning sites with a finger tapping task,” Neuroimage49(1), 552–560 (2010). [CrossRef] [PubMed]
  60. E. A. Stringer, L. M. Chen, R. M. Friedman, C. Gatenby, and J. C. Gore, “Differentiation of somatosensory cortices by high-resolution fMRI at 7 T,” Neuroimage54(2), 1012–1020 (2011). [CrossRef] [PubMed]
  61. S. A. Julious, “Repeated measures in clinical trials: analysis using mean summary statistics and its implications for design by L. Frison and S.J. Pocock, Statistics in Medicine 1992; 12: 1685-1704,” Stat. Med.19(22), 3133–3135 (2000). [CrossRef] [PubMed]
  62. V. B. Mountcastle, J. C. Lynch, A. Georgopoulos, H. Sakata, and C. Acuna, “Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space,” J. Neurophysiol.38(4), 871–908 (1975). [PubMed]
  63. R. C. Mesquita, M. A. Franceschini, and D. A. Boas, “Resting state functional connectivity of the whole head with near-infrared spectroscopy,” Biomed. Opt. Express1(1), 324–336 (2010). [CrossRef] [PubMed]
  64. K. Li, L. Guo, J. Nie, G. Li, and T. Liu, “Review of methods for functional brain connectivity detection using fMRI,” Comput. Med. Imaging Graph.33(2), 131–139 (2009). [CrossRef] [PubMed]
  65. R. W. Aldhaheri, “Model order reduction via real Schur-form decomposition,” Int. J. Control53(3), 709–716 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited