OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 2 — Feb. 1, 2011
  • pp: 271–277

On-chip spectrophotometry for bioanalysis using microring resonators

Arthur Nitkowski, Antje Baeumner, and Michal Lipson  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 2, pp. 271-277 (2011)
http://dx.doi.org/10.1364/BOE.2.000271


View Full Text Article

Enhanced HTML    Acrobat PDF (954 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We measure optical absorption in color-producing enzymatic reactions for biochemical analysis with a microscale optofluidic device. Cavity-enhanced laser spectrophotometry is performed on analytes within a microfluidic channel at visible wavelengths with silicon nitride microring resonators of 100 µm radius and quality factor of ~180,000. The resonator transmission spectrum is analyzed to determine optical absorption with a detection limit of 0.12 cm−1. The device can be used to detect the activity of individual enzymes in a few minutes within a 100 fL sensing volume. The high sensitivity, small footprint, and low analyte consumption make absorption-based microring resonators attractive for lab-on-a-chip applications.

© 2011 OSA

OCIS Codes
(130.6010) Integrated optics : Sensors
(300.6550) Spectroscopy : Spectroscopy, visible
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Biosensors and Molecular Diagnostics

History
Original Manuscript: November 18, 2010
Revised Manuscript: December 23, 2010
Manuscript Accepted: December 27, 2010
Published: January 5, 2011

Citation
Arthur Nitkowski, Antje Baeumner, and Michal Lipson, "On-chip spectrophotometry for bioanalysis using microring resonators," Biomed. Opt. Express 2, 271-277 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-2-271


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007). [CrossRef]
  2. D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale,” Microfluid Nanofluidics 4(1-2), 33–52 (2008). [CrossRef] [PubMed]
  3. W. G. Yang, D. B. Conkey, B. Wu, D. L. Yin, A. R. Hawkins, and H. Schmidt, “Atomic spectroscopy on a chip,” Nat. Photonics 1(6), 331–335 (2007). [CrossRef]
  4. Y. Fainman, L. Lee, D. Psaltis, and C. Yang, Optofluidics: Fundamentals, Devices, and Applications (McGraw-Hill, Inc., 2010).
  5. M. L. Adams, M. Enzelberger, S. Quake, and A. Scherer, “Microfluidic integration on detector arrays for absorption and fluorescence micro-spectrometers,” Sens. Actuators A Phys. 104(1), 25–31 (2003). [CrossRef]
  6. W. E. Groves, F. C. Davis, and B. H. Sells, “Spectrophotometric determination of microgram quantities of protein without nucleic acid interference,” Anal. Biochem. 22(2), 195–210 (1968). [CrossRef] [PubMed]
  7. A. Fleck and H. N. Munro, “The precision of ultraviolet absorption measurements in the Schmidt-Thannhauser procedure for nucleic acid estimation,” Biochim. Biophys. Acta 55(5), 571–583 (1962). [CrossRef] [PubMed]
  8. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” J. Immunol. Methods 65(1-2), 55–63 (1983). [CrossRef] [PubMed]
  9. M. Manafi, W. Kneifel, and S. Bascomb, “Fluorogenic and chromogenic substrates used in bacterial diagnostics,” Microbiol. Rev. 55(3), 335–348 (1991). [PubMed]
  10. V. M. Cooke, R. J. Miles, R. G. Price, and A. C. Richardson, “A novel chromogenic ester agar medium for detection of Salmonellae,” Appl. Environ. Microbiol. 65(2), 807–812 (1999). [PubMed]
  11. E. Shah Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17(17), 14543–14551 (2009). [CrossRef] [PubMed]
  12. A. Nitkowski, L. Chen, and M. Lipson, “Cavity-enhanced on-chip absorption spectroscopy using microring resonators,” Opt. Express 16(16), 11930–11936 (2008). [CrossRef] [PubMed]
  13. J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Cavity-Enhanced IR Absorption in Planar Chalcogenide Glass Microdisk Resonators: Experiment and Analysis,” J. Lightwave Technol. 27(23), 5240–5245 (2009). [CrossRef]
  14. A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31(12), 1896–1898 (2006). [CrossRef] [PubMed]
  15. A. Waggoner, “Fluorescent labels for proteomics and genomics,” Curr. Opin. Chem. Biol. 10(1), 62–66 (2006). [CrossRef] [PubMed]
  16. J. R. Crowther, “ELISA. Theory and practice,” Methods Mol. Biol. 42, 1–218 (1995). [PubMed]
  17. M. M. Mesulam, “Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents,” J. Histochem. Cytochem. 26(2), 106–117 (1978). [PubMed]
  18. R. W. Boyd and J. E. Heebner, “Sensitive disk resonator photonic biosensor,” Appl. Opt. 40(31), 5742–5747 (2001). [CrossRef] [PubMed]
  19. N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J Biophotonics 2(4), 212–226 (2009). [CrossRef] [PubMed]
  20. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett. 32(21), 3080–3082 (2007). [CrossRef] [PubMed]
  21. E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, “Sensor based on an integrated optical microcavity,” Opt. Lett. 27(7), 512–514 (2002). [CrossRef] [PubMed]
  22. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000). [CrossRef]
  23. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009). [CrossRef] [PubMed]
  24. J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75(23), 6544–6554 (2003). [CrossRef] [PubMed]
  25. P. Heimala, P. Katila, J. Aarnio, and A. Heinamaki, “Thermally tunable integrated optical ring resonator with poly-Si thermistor,” J. Lightwave Technol. 14(10), 2260–2267 (1996). [CrossRef]
  26. D. M. Rissin, C. W. Kan, T. G. Campbell, S. C. Howes, D. R. Fournier, L. Song, T. Piech, P. P. Patel, L. Chang, A. J. Rivnak, E. P. Ferrell, J. D. Randall, G. K. Provuncher, D. R. Walt, and D. C. Duffy, “Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations,” Nat. Biotechnol. 28(6), 595–599 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited