OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 2 — Feb. 1, 2011
  • pp: 291–304

Vapor bubble generation around gold nano-particles and its application to damaging of cells

M. Kitz, S. Preisser, A. Wetterwald, M. Jaeger, G. N. Thalmann, and M. Frenz  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 2, pp. 291-304 (2011)
http://dx.doi.org/10.1364/BOE.2.000291


View Full Text Article

Enhanced HTML    Acrobat PDF (1026 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigated vapor bubbles generated upon irradiation of gold nanoparticles with nanosecond laser pulses. Bubble formation was studied both with optical and acoustic means on supported single gold nanoparticles and single nanoparticles in suspension. Formation thresholds determined at different wavelengths indicate a bubble formation efficiency increasing with the irradiation wavelength. Vapor bubble generation in Bac-1 cells containing accumulations of the same particles was also investigated at different wavelengths. Similarly, they showed an increasing cell damage efficiency for longer wavelengths. Vapor bubbles generated by single laser pulses were about half the cell size when inducing acute damage.

© 2011 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.5180) Medical optics and biotechnology : Photodynamic therapy

ToC Category:
Optical Therapies and Photomodificaton

History
Original Manuscript: October 11, 2010
Revised Manuscript: December 7, 2010
Manuscript Accepted: January 9, 2011
Published: January 11, 2011

Citation
M. Kitz, S. Preisser, A. Wetterwald, M. Jaeger, G. N. Thalmann, and M. Frenz, "Vapor bubble generation around gold nano-particles and its application to damaging of cells," Biomed. Opt. Express 2, 291-304 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-2-291


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Agarwal, S. W. Huang, M. O'Donnell, K. C. Day, M. Day, N. Kotov, and S. Ashkenazi, “Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging,” J. Appl. Phys. 102(6), 064701–064704 (2007). [CrossRef]
  2. J. A. Copland, M. Eghtedari, V. L. Popov, N. Kotov, N. Mamedova, M. Motamedi, and A. A. Oraevsky, “Bioconjugated gold nanoparticles as a molecular based contrast agent: implications for imaging of deep tumors using optoacoustic tomography,” Mol. Imaging Biol. 6(5), 341–349 (2004). [CrossRef] [PubMed]
  3. E. B. Dickerson, E. C. Dreaden, X. Huang, I. H. El-Sayed, H. Chu, S. Pushpanketh, J. F. McDonald, and M. A. El-Sayed, “Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice,” Cancer Lett. 269(1), 57–66 (2008). [CrossRef] [PubMed]
  4. D. Lapotko, E. Lukianova, M. Potapnev, O. Aleinikova, and A. Oraevsky, “Method of laser activated nano-thermolysis for elimination of tumor cells,” Cancer Lett. 239(1), 36–45 (2006). [CrossRef] [PubMed]
  5. D. P. O’Neal, L. R. Hirsch, N. J. Halas, J. D. Payne, and J. L. West, “Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles,” Cancer Lett. 209(2), 171–176 (2004). [CrossRef] [PubMed]
  6. L. Tong, Y. Zhao, T. B. Huff, M. N. Hansen, A. Wei, and J. X. Cheng, “Gold Nanorods Mediate Tumor Cell Death by Compromising Membrane Integrity,” Adv. Mater. (Deerfield Beach Fla.) 19(20), 3136–3141 (2007). [CrossRef] [PubMed]
  7. V. P. Zharov, E. I. Galanzha, E. V. Shashkov, N. G. Khlebtsov, and V. V. Tuchin, “In vivo photoacoustic flow cytometry for monitoring of circulating single cancer cells and contrast agents,” Opt. Lett. 31(24), 3623–3625 (2006). [CrossRef] [PubMed]
  8. X. Yang, E. W. Stein, S. Ashkenazi, and L. V. Wang, “Nanoparticles for photoacoustic imaging,” Wiley Interdiscip Rev Nanomed Nanobiotechnol 1(4), 360–368 (2009). [CrossRef] [PubMed]
  9. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006). [CrossRef] [PubMed]
  10. C. M. Pitsillides, E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin, “Selective cell targeting with light-absorbing microparticles and nanoparticles,” Biophys. J. 84(6), 4023–4032 (2003). [CrossRef] [PubMed]
  11. V. P. Zharov, R. R. Letfullin, and E. N. Galitovskaya, “Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters,” J. Phys. D Appl. Phys. 38(15), 2571–2581 (2005). [CrossRef]
  12. K. R. Rau, P. A. Quinto-Su, A. N. Hellman, and V. Venugopalan, “Pulsed laser microbeam-induced cell lysis: time-resolved imaging and analysis of hydrodynamic effects,” Biophys. J. 91(1), 317–329 (2006). [CrossRef] [PubMed]
  13. S. Egerev, S. Ermilov, O. Ovchinnikov, A. Fokin, D. Guzatov, V. Klimov, A. Kanavin, and A. Oraevsky, “Acoustic signals generated by laser-irradiated metal nanoparticles,” Appl. Opt. 48(7), C38–C45 (2009). [CrossRef] [PubMed]
  14. V. P. Zharov, K. E. Mercer, E. N. Galitovskaya, and M. S. Smeltzer, “Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles,” Biophys. J. 90(2), 619–627 (2006). [CrossRef] [PubMed]
  15. J. Rička, “Dynamic light scattering with single-mode and multimode receivers,” Appl. Opt. 32(15), 2860–2875 (1993). [CrossRef] [PubMed]
  16. M. Ruosch, D. Marti, P. Stoller, J. Rička, and M. Frenz, “Dependence of the multiphoton luminescence spectrum of single gold nanoparticles on the refractive index of the surrounding medium,” Proc. SPIE 7032(2008).
  17. L. Rayleigh, “On the Pressure developed in a Liquid during the Collapse of a Spherical Cavity,” Philos. Mag. 34, 94–98 (1917).
  18. H. Okumura and N. Ito, “Nonequilibrium molecular dynamics simulations of a bubble,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 67(4), 045301 (2003). [CrossRef] [PubMed]
  19. D. Lapotko, A. Shnip, and E. Lukianova, “Photothermal responses of individual cells,” J. Biomed. Opt. 10(1), 014006–014012 (2005). [CrossRef] [PubMed]
  20. I. Akhatov, O. Lindau, A. Topolnikov, R. Mettin, N. Vakhitova, and W. Lauterborn, “Collapse and rebound of a laser-induced cavitation bubble,” Phys. Fluids 13(10), 2805–2819 (2001). [CrossRef]
  21. M. S. Hutson and X. Ma, “Plasma and cavitation dynamics during pulsed laser microsurgery in vivo,” Phys. Rev. Lett. 99(15), 158104 (2007). [CrossRef] [PubMed]
  22. T. Asshauer, G. Delacrétaz, E. D. Jansen, A. J. Welch, and M. Frenz, “Pulsed holmium laser ablation of tissue phantoms: correlation between bubble formation and acoustic transients,” Appl. Phys. B 65(4-5), 647–657 (1997). [CrossRef]
  23. M. Frenz, H. Pratisto, F. Könz, E. D. Jansen, A. J. Welch, and H. P. Weber, “Comparison of the effects of absorption coefficient and pulse duration of 2.12 mm and 2.79 mm radiation on laser ablation of tissue,” IEEE J. Quantum Electron. 32(12), 2025–2036 (1996). [CrossRef]
  24. A. Vogel, W. Lauterborn, and R. Timm, “Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary,” J. Fluid Mech. 206(-1), 299–338 (1989). [CrossRef]
  25. C. E. Brennen, Cavitation and Bubble Dynamics (Oxford University Press, New York, 1995), Chap. 1.10.
  26. S. C. Hendy, “A thermodynamic model for the melting of supported metal nanoparticles,” Nanotechnology 18(17), 175703 (2007). [CrossRef]
  27. V. P. Zharov, E. N. Galitovskaya, C. Johnson, and T. Kelly, “Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: potential for cancer therapy,” Lasers Surg. Med. 37(3), 219–226 (2005). [CrossRef] [PubMed]
  28. B. Khlebtsov, V. P. Zharov, A. Melnikov, V. Tuchin, and N. G. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17(20), 5167–5179 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited