OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 2 — Feb. 1, 2011
  • pp: 356–364

Multimodal wide-field two-photon excitation imaging: characterization of the technique for in vivo applications

Jae Youn Hwang, Sebastian Wachsmann-Hogiu, V Krishnan Ramanujan, Andreas G. Nowatzyk, Yosef Koronyo, Lali K. Medina-Kauwe, Zeev Gross, Harry B. Gray, and Daniel L. Farkas  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 2, pp. 356-364 (2011)
http://dx.doi.org/10.1364/BOE.2.000356


View Full Text Article

Enhanced HTML    Acrobat PDF (1138 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report fast, non-scanning, wide-field two-photon fluorescence excitation with spectral and lifetime detection for in vivo biomedical applications. We determined the optical characteristics of the technique, developed a Gaussian flat-field correction method to reduce artifacts resulting from non-uniform excitation such that contrast is enhanced, and showed that it can be used for ex vivo and in vivo cellular-level imaging. Two applications were demonstrated: (i) ex vivo measurements of beta-amyloid plaques in retinas of transgenic mice, and (ii) in vivo imaging of sulfonated gallium(III) corroles injected into tumors. We demonstrate that wide-field two photon fluorescence excitation with flat-field correction provides more penetration depth as well as better contrast and axial resolution than the corresponding one-photon wide field excitation for the same dye. Importantly, when this technique is used together with spectral and fluorescence lifetime detection modules, it offers improved discrimination between fluorescence from molecules of interest and autofluorescence, with higher sensitivity and specificity for in vivo applications.

© 2011 OSA

OCIS Codes
(110.4234) Imaging systems : Multispectral and hyperspectral imaging
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Microscopy

History
Original Manuscript: September 22, 2010
Revised Manuscript: December 10, 2010
Manuscript Accepted: December 20, 2010
Published: January 13, 2011

Citation
Jae Youn Hwang, Sebastian Wachsmann-Hogiu, V Krishnan Ramanujan, Andreas G. Nowatzyk, Yosef Koronyo, Lali K. Medina-Kauwe, Zeev Gross, Harry B. Gray, and Daniel L. Farkas, "Multimodal wide-field two-photon excitation imaging: characterization of the technique for in vivo applications," Biomed. Opt. Express 2, 356-364 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-2-356


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Rubart, “Two-photon microscopy of cells and tissue,” Circ. Res. 95(12), 1154–1166 (2004). [CrossRef] [PubMed]
  2. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990). [CrossRef] [PubMed]
  3. V. E. Centonze and J. G. White, “Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging,” Biophys. J. 75(4), 2015–2024 (1998). [CrossRef] [PubMed]
  4. G. H. Patterson and D. W. Piston, “Photobleaching in two-photon excitation microscopy,” Biophys. J. 78(4), 2159–2162 (2000). [CrossRef] [PubMed]
  5. A. Egner and S. W. Hell, “Time multiplexing and parallelization in multifocal multiphoton microscopy,” J. Opt. Soc. Am. A 17(7), 1192–1201 (2000). [CrossRef] [PubMed]
  6. Q. T. Nguyen, N. Callamaras, C. Hsieh, and I. Parker, “Construction of a two-photon microscope for video-rate Ca(2+) imaging,” Cell Calcium 30(6), 383–393 (2001). [CrossRef] [PubMed]
  7. G. J. Brakenhoff, J. Squier, T. Norris, A. C. Bliton, M. H. Wade, and B. Athey, “Real-time two-photon confocal microscopy using a femtosecond, amplified Ti:sapphire system,” J. Microsc. 181(3), 253–259 (1996). [CrossRef] [PubMed]
  8. V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 5 (2008). [CrossRef] [PubMed]
  9. E. Papagiakoumou, V. de Sars, V. Emiliani, and D. Oron, “Temporal focusing with spatially modulated excitation,” Opt. Express 17(7), 5391–5401 (2009). [CrossRef] [PubMed]
  10. J. Palero, S. I. C. O. Santos, D. Artigas, and P. Loza-Alvarez, “A simple scanless two-photon fluorescence microscope using selective plane illumination,” Opt. Express 18(8), 8491–8498 (2010). [CrossRef] [PubMed]
  11. S. Wachsmann-Hogiu, J. Y. Hwang, E. Lindsley, and D. L. Farkas, “Wide-field two-photon microscopy: features and advantages for biomedical applications,” Prog. Biomed. Opt. Imaging 8, 1–8 (2007).
  12. M. V. Macville, J. A. Van der Laak, E. J. Speel, N. Katzir, Y. Garini, D. Soenksen, G. McNamara, P. C. de Wilde, A. G. Hanselaar, A. H. Hopman, and T. Ried, “Spectral imaging of multi-color chromogenic dyes in pathological specimens,” Anal. Cell. Pathol. 22(3), 133–142 (2001). [PubMed]
  13. A. Deniset-Besseau, S. Lévêque-Fort, M. P. Fontaine-Aupart, G. Roger, and P. Georges, “Three-dimensional time-resolved fluorescence imaging by multifocal multiphoton microscopy for a photosensitizer study in living cells,” Appl. Opt. 46(33), 8045–8051 (2007). [CrossRef] [PubMed]
  14. J. R. Lakowicz, “Emerging applications of fluorescence spectroscopy to cellular imaging: lifetime imaging, metal-ligand probes, multi-photon excitation and light quenching,” Scanning Microsc. Suppl. 10, 213–224 (1996). [PubMed]
  15. H. Agadjanian, J. Ma, A. Rentsendorj, V. Valluripalli, J. Y. Hwang, A. Mahammed, D. L. Farkas, H. B. Gray, Z. Gross, and L. K. Medina-Kauwe, “Tumor detection and elimination by a targeted gallium corrole,” Proc. Natl. Acad. Sci. U.S.A. 106(15), 6105–6110 (2009). [CrossRef] [PubMed]
  16. Z. Okun, L. Kupershmidt, T. Amit, S. Mandel, O. Bar-Am, M. B. Youdim, and Z. Gross, “Manganese corroles prevent intracellular nitration and subsequent death of insulin-producing cells,” ACS Chem. Biol. 4(11), 910–914 (2009). [CrossRef] [PubMed]
  17. L. Kupershmidt, Z. Okun, T. Amit, S. Mandel, I. Saltsman, A. Mahammed, O. Bar-Am, Z. Gross, and M. B. Youdim, “Metallocorroles as cytoprotective agents against oxidative and nitrative stress in cellular models of neurodegeneration,” J. Neurochem. 113(2), 363–373 (2010). [CrossRef] [PubMed]
  18. A. Kanamori, M. M. Catrinescu, A. Mahammed, Z. Gross, and L. A. Levin, “Neuroprotection against superoxide anion radical by metallocorroles in cellular and murine models of optic neuropathy,” J. Neurochem. 114(2), 488–498 (2010). [PubMed]
  19. M. Koronyo-Hamaoui, Y. Koronyo, A. V. Ljubimov, C. A. Miller, M. K. Ko, K. L. Black, M. Schwartz, and D. L. Farkas, “Identification of amyloid plaques in retinas from Alzheimer’s patients and noninvasive in vivo optical imaging of retinal plaques in a mouse model,” Neuroimage 54, S204–S217 (2011). [CrossRef] [PubMed]
  20. H. Agadjanian, J. J. Weaver, A. Mahammed, A. Rentsendorj, S. Bass, J. Kim, I. J. Dmochowski, R. Margalit, H. B. Gray, Z. Gross, and L. K. Medina-Kauwe, “Specific delivery of corroles to cells via noncovalent conjugates with viral proteins,” Pharm. Res. 23(2), 367–377 (2006). [CrossRef] [PubMed]
  21. S. T. Flock, S. L. Jacques, B. C. Wilson, W. M. Star, and M. J. van Gemert, “Optical properties of Intralipid: a phantom medium for light propagation studies,” Lasers Surg. Med. 12(5), 510–519 (1992). [CrossRef] [PubMed]
  22. A. Chung, S. Karlan, E. Lindsley, S. Wachsmann-Hogiu, and D. L. Farkas, “In vivo cytometry: a spectrum of possibilities,” Cytometry A 69A(3), 142–146 (2006). [CrossRef] [PubMed]
  23. S. D. Foss, “A method of exponential curve fitting by numerical integration,” Biometrics 26(4), 815–821 (1970). [CrossRef]
  24. M. E. Dickinson, E. Simbuerger, B. Zimmermann, C. W. Waters, and S. E. Fraser, “Multiphoton excitation spectra in biological samples,” J. Biomed. Opt. 8(3), 329–338 (2003). [CrossRef] [PubMed]
  25. K. M. Hanson, M. J. Behne, N. P. Barry, T. M. Mauro, E. Gratton, and R. M. Clegg, “Two-photon fluorescence lifetime imaging of the skin stratum corneum pH gradient,” Biophys. J. 83(3), 1682–1690 (2002). [CrossRef] [PubMed]
  26. B. Rajwa, T. Bernas, H. Acker, J. Dobrucki, and J. P. Robinson, “Single- and two-photon spectral imaging of intrinsic fluorescence of transformed human hepatocytes,” Microsc. Res. Tech. 70(10), 869–879 (2007). [CrossRef] [PubMed]
  27. D. N. Fittinghoff, P. W. Wiseman, and J. A. Squier, “Widefield multiphoton and temporally decorrelated multifocal multiphoton microscopy,” Opt. Express 7(8), 273–279 (2000). [CrossRef] [PubMed]
  28. J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using one- and two-photon fluorescence microendoscopy,” J. Neurophysiol. 92(5), 3121–3133 (2004). [CrossRef] [PubMed]
  29. B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30(17), 2272–2274 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited