OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 2 — Feb. 1, 2011
  • pp: 374–384

Skeletal muscle sarcomeric SHG patterns photo-conversion by femtosecond infrared laser

Gaëlle Recher, Denis Rouède, Emmanuel Schaub, and François Tiaho  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 2, pp. 374-384 (2011)
http://dx.doi.org/10.1364/BOE.2.000374


View Full Text Article

Enhanced HTML    Acrobat PDF (1040 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Femtosecond laser at 780 nm excitation wavelength was used to photo-convert the physiological sarcomeric single band (SB) second harmonic generation (SHG) pattern into double band (DB) in Xenopus laevis premetamorphic tail muscles. This photo-conversion was found to be a third order non-linear optical process and was drastically reduced at 940 nm excitation wavelength. This effect was no longer observed in paraformaldehyde fixed muscles and was enhanced by hydrogen peroxide. The action of hydrogen peroxide suggests that reactive oxygen species (ROS) could contribute to this photo-conversion. These results demonstrate that sarcomeric DB SHG pattern is a marker of sarcomere photodamage in xenopus tadpole muscles and highlight the need of being very careful at using two-photon excitation while observing living tissues. Moreover they open new avenues for in situ intravital investigation of oxidative stress effects in muscle dysfunctions and diseases.

© 2011 OSA

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(190.4160) Nonlinear optics : Multiharmonic generation
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Optical Therapies and Photomodificaton

History
Original Manuscript: December 7, 2010
Revised Manuscript: January 14, 2011
Manuscript Accepted: January 14, 2011
Published: January 19, 2011

Citation
Gaëlle Recher, Denis Rouède, Emmanuel Schaub, and François Tiaho, "Skeletal muscle sarcomeric SHG patterns photo-conversion by femtosecond infrared laser," Biomed. Opt. Express 2, 374-384 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-2-374


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J. 82(1), 493–508 (2002). [CrossRef] [PubMed]
  2. A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80(4), 2029–2036 (2001). [CrossRef] [PubMed]
  3. H. J. Koester, D. Baur, R. Uhl, and S. W. Hell, “Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage,” Biophys. J. 77(4), 2226–2236 (1999). [CrossRef] [PubMed]
  4. M. Rubart, “Two-photon microscopy of cells and tissue,” Circ. Res. 95(12), 1154–1166 (2004). [CrossRef] [PubMed]
  5. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003). [CrossRef] [PubMed]
  6. W. Denk, J. H. Strickler, and W. W. Webb, “““Two-photon laser scanning fluorescence microscopy,” Science (New York, N,” Y 248, 73–76 (1990).
  7. K. Svoboda, D. W. Tank, and W. Denk, “Direct measurement of coupling between dendritic spines and shafts,” Science 272(5262), 716–719 (1996). [CrossRef] [PubMed]
  8. U. K. Tirlapur and K. König, “Targeted transfection by femtosecond laser,” Nature 418(6895), 290–291 (2002). [CrossRef] [PubMed]
  9. U. K. Tirlapur, K. König, C. Peuckert, R. Krieg, and K. J. Halbhuber, “Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death,” Exp. Cell Res. 263(1), 88–97 (2001). [CrossRef] [PubMed]
  10. M. A. Aon, S. Cortassa, E. Marbán, and B. O’Rourke, “Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes,” J. Biol. Chem. 278(45), 44735–44744 (2003). [CrossRef] [PubMed]
  11. W. G. Fisher, W. P. Partridge, C. Dees, and E. A. Wachter, “Simultaneous two-photon activation of type-I photodynamic therapy agents,” Photochem. Photobiol. 66(2), 141–155 (1997). [CrossRef] [PubMed]
  12. T. Boulesteix, E. Beaurepaire, M. P. Sauviat, and M. C. Schanne-Klein, “Second-harmonic microscopy of unstained living cardiac myocytes: measurements of sarcomere length with 20-nm accuracy,” Opt. Lett. 29(17), 2031–2033 (2004). [CrossRef] [PubMed]
  13. S. V. Plotnikov, A. C. Millard, P. J. Campagnola, and W. A. Mohler, “Characterization of the myosin-based source for second-harmonic generation from muscle sarcomeres,” Biophys. J. 90(2), 693–703 (2006). [CrossRef] [PubMed]
  14. C. Greenhalgh, N. Prent, C. Green, R. Cisek, A. Major, B. Stewart, and V. Barzda, “Influence of semicrystalline order on the second-harmonic generation efficiency in the anisotropic bands of myocytes,” Appl. Opt. 46(10), 1852–1859 (2007). [CrossRef] [PubMed]
  15. N. Prent, C. Green, C. Greenhalgh, R. Cisek, A. Major, B. Stewart, and V. Barzda, “Intermyofilament dynamics of myocytes revealed by second harmonic generation microscopy,” J. Biomed. Opt. 13(4), 041318 (2008). [CrossRef] [PubMed]
  16. F. Vanzi, M. Capitanio, L. Sacconi, C. Stringari, R. Cicchi, M. Canepari, M. Maffei, N. Piroddi, C. Poggesi, V. Nucciotti, M. Linari, G. Piazzesi, C. Tesi, R. Antolini, V. Lombardi, R. Bottinelli, and F. S. Pavone, “New techniques in linear and non-linear laser optics in muscle research,” J. Muscle Res. Cell Motil. 27(5-7), 469–479 (2006). [CrossRef] [PubMed]
  17. M. Both, M. Vogel, O. Friedrich, F. von Wegner, T. Künsting, R. H. A. Fink, and D. Uttenweiler, “Second harmonic imaging of intrinsic signals in muscle fibers in situ,” J. Biomed. Opt. 9(5), 882–892 (2004). [CrossRef] [PubMed]
  18. G. Recher, D. Rouède, P. Richard, A. Simon, J.-J. Bellanger, and F. Tiaho, “Three distinct sarcomeric patterns of skeletal muscle revealed by SHG and TPEF microscopy,” Opt. Express 17(22), 19763–19777 (2009). [CrossRef] [PubMed]
  19. G. Recher, D. Rouède, C. Tascon, L. A. D’Amico, and F. Tiaho, “Double-band sarcomeric SHG pattern induced by adult skeletal muscles alteration during myofibrils preparation,” J. Microsc. 241(2), 207–211 (2011). [CrossRef] [PubMed]
  20. F. Tiaho, G. Recher, and D. Rouède, “Estimation of helical angles of myosin and collagen by second harmonic generation imaging microscopy,” Opt. Express 15(19), 12286–12295 (2007). [CrossRef] [PubMed]
  21. E. Ralston, B. Swaim, M. Czapiga, W. L. Hwu, Y. H. Chien, M. G. Pittis, B. Bembi, O. Schwartz, P. Plotz, and N. Raben, “Detection and imaging of non-contractile inclusions and sarcomeric anomalies in skeletal muscle by second harmonic generation combined with two-photon excited fluorescence,” J. Struct. Biol. 162(3), 500–508 (2008). [CrossRef] [PubMed]
  22. I. Agarkova, E. Ehler, S. Lange, R. Schoenauer, and J. C. Perriard, “M-band: a safeguard for sarcomere stability?” J. Muscle Res. Cell Motil. 24(2/3), 191–203 (2003). [CrossRef] [PubMed]
  23. R. Horowits, E. S. Kempner, M. E. Bisher, and R. J. Podolsky, “A physiological role for titin and nebulin in skeletal muscle,” Nature 323(6084), 160–164 (1986). [CrossRef] [PubMed]
  24. R. W. Ogilvie, R. B. Armstrong, K. E. Baird, and C. L. Bottoms, “Lesions in the rat soleus muscle following eccentrically biased exercise,” Am. J. Anat. 182(4), 335–346 (1988). [CrossRef] [PubMed]
  25. S. G. Page and H. E. Huxley, “Filament Lengths in Striated Muscle,” J. Cell Biol. 19(2), 369–390 (1963). [CrossRef] [PubMed]
  26. J. L. Thompson, E. M. Balog, R. H. Fitts, and D. A. Riley, “Five myofibrillar lesion types in eccentrically challenged, unloaded rat adductor longus muscle--a test model,” Anat. Rec. 254(1), 39–52 (1999). [CrossRef] [PubMed]
  27. K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption,” Opt. Lett. 21(14), 1090–1092 (1996). [CrossRef] [PubMed]
  28. K. König, T. W. Becker, P. Fischer, I. Riemann, and K. J. Halbhuber, “Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes,” Opt. Lett. 24(2), 113–115 (1999). [CrossRef] [PubMed]
  29. K. König, P. T. So, W. W. Mantulin, and E. Gratton, “Cellular response to near-infrared femtosecond laser pulses in two-photon microscopes,” Opt. Lett. 22(2), 135–136 (1997). [CrossRef] [PubMed]
  30. D. Linde and H. Schüler, “Breakdown threshold and plasma formation in femtosecond laser solid interaction,” J. Opt. Soc. Am. B 13(1), 216–222 (1996). [CrossRef]
  31. J. Eng, R. M. Lynch, and R. S. Balaban, “Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes,” Biophys. J. 55(4), 621–630 (1989). [CrossRef] [PubMed]
  32. J. De Ruyck, M. Famerée, J. Wouters, E. A. Perpète, J. Preat, and D. Jacquemin, “Towards the understanding of the absorption spectra of NAD(P)H/NAD(P)+ as a common indicator of dehydrogenase enzymatic activity,” Chem. Phys. Lett. 450(1–3), 119–122 (2007). [CrossRef]
  33. W. Ying, “NAD+/NADH and NADP+/NADPH in cellular functions and cell death: regulation and biological consequences,” Antioxid. Redox Signal. 10(2), 179–206 (2008). [CrossRef] [PubMed]
  34. C. J. Bertling, F. Lin, and A. W. Girotti, “Role of hydrogen peroxide in the cytotoxic effects of UVA/B radiation on mammalian cells,” Photochem. Photobiol. 64(1), 137–142 (1996). [CrossRef] [PubMed]
  35. P. E. Hockberger, T. A. Skimina, V. E. Centonze, C. Lavin, S. Chu, S. Dadras, J. K. Reddy, and J. G. White, “Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells,” Proc. Natl. Acad. Sci. U.S.A. 96(11), 6255–6260 (1999). [CrossRef] [PubMed]
  36. J. M. Squirrell, D. L. Wokosin, J. G. White, and B. D. Bavister, “Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability,” Nat. Biotechnol. 17(8), 763–767 (1999). [CrossRef] [PubMed]
  37. K. König, H. Liang, M. W. Berns, and B. J. Tromberg, “Cell damage by near-IR microbeams,” Nature 377(6544), 20–21 (1995). [CrossRef] [PubMed]
  38. D. Träutlein, M. Deibler, A. Leitenstorfer, and E. Ferrando-May, “Specific local induction of DNA strand breaks by infrared multi-photon absorption,” Nucleic Acids Res. 38(3), e14 (2010). [CrossRef] [PubMed]
  39. H. Oehring, I. Riemann, P. Fischer, K. J. Halbhuber, and K. Konig, “Ultrastructure and reproduction behaviour of single CHO-K1 cells exposed to near infrared femtosecond laser pulses,” Scanning 22(4), 263–270 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited