OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 2 — Feb. 1, 2011
  • pp: 396–407

Non-contact spectroscopic determination of large blood volume fractions in turbid media

Rolf H. Bremmer, Stephen C. Kanick, Nick Laan, Arjen Amelink, Ton G. van Leeuwen, and Maurice C. G. Aalders  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 2, pp. 396-407 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1068 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a non-contact method to quantitatively determine blood volume fractions in turbid media by reflectance spectroscopy in the VIS/NIR spectral wavelength range. This method will be used for spectral analysis of tissue with large absorption coefficients and assist in age determination of bruises and bloodstains. First, a phantom set was constructed to determine the effective photon path length as a function of μa and μs′ on phantoms with an albedo range: 0.02-0.99. Based on these measurements, an empirical model of the path length was established for phantoms with an albedo > 0.1. Next, this model was validated on whole blood mimicking phantoms, to determine the blood volume fractions ρ = 0.12-0.84 within the phantoms (r = 0.993; error < 10%). Finally, the model was proved applicable on cotton fabric phantoms.

© 2011 OSA

OCIS Codes
(000.1430) General : Biology and medicine
(170.1470) Medical optics and biotechnology : Blood or tissue constituent monitoring
(300.1030) Spectroscopy : Absorption

ToC Category:
Spectroscopic Diagnostics

Original Manuscript: November 23, 2010
Revised Manuscript: January 21, 2011
Manuscript Accepted: January 23, 2011
Published: January 24, 2011

Rolf H. Bremmer, Stephen C. Kanick, Nick Laan, Arjen Amelink, Ton G. van Leeuwen, and Maurice C. G. Aalders, "Non-contact spectroscopic determination of large blood volume fractions in turbid media," Biomed. Opt. Express 2, 396-407 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Marrone and J. Ballantyne, “Changes in dry state hemoglobin over time do not increase the potential for oxidative DNA damage in dried blood,” PLoS ONE 4(4), e5110 (2009). [CrossRef] [PubMed]
  2. M. Bauer, S. Polzin, and D. Patzelt, “Quantification of RNA degradation by semi-quantitative duplex and competitive RT-PCR: a possible indicator of the age of bloodstains?” Forensic Sci. Int. 138(1-3), 94–103 (2003). [CrossRef] [PubMed]
  3. Y. Fujita, K. Tsuchiya, S. Abe, Y. Takiguchi, S. Kubo, and H. Sakurai, “Estimation of the age of human bloodstains by electron paramagnetic resonance spectroscopy: long-term controlled experiment on the effects of environmental factors,” Forensic Sci. Int. 152(1), 39–43 (2005). [CrossRef] [PubMed]
  4. S. Strasser, A. Zink, G. Kada, P. Hinterdorfer, O. Peschel, W. M. Heckl, A. G. Nerlich, and S. Thalhammer, “Age determination of blood spots in forensic medicine by force spectroscopy,” Forensic Sci. Int. 170(1), 8–14 (2007). [CrossRef] [PubMed]
  5. R. H. Bremmer, A. Nadort, T. G. van Leeuwen, M. J. van Gemert, and M. C. Aalders, “Age estimation of blood stains by hemoglobin derivative determination using reflectance spectroscopy,” Forensic Sci. Int. (to be published). [PubMed]
  6. K. Virkler and I. K. Lednev, “Analysis of body fluids for forensic purposes: from laboratory testing to non-destructive rapid confirmatory identification at a crime scene,” Forensic Sci. Int. 188(1-3), 1–17 (2009). [CrossRef] [PubMed]
  7. T. Otto, V. Stock, W.-D. Schmidt, K. Liebold, D. Fassler, U. Wollina, U. Fritzsch, and T. Gessner, “Medical applications of VIS/NIR spectroscopy of human tissue surfaces by a novel portable instrumentation,” Proc. SPIE 4491, 203–214 (2001). [CrossRef]
  8. I. Charamisinau, K. Keymel, W. Potter, and A. R. Oseroff, “Handheld dual fluorescence and reflection spectroscopy system for monitoring topical low dose ALA-PDT of actinic keratoses (AK),” Proc. SPIE 6139, 61391E, 61391E-10 (2006). [CrossRef]
  9. C. S. Mulvey, C. A. Sherwood, and I. J. Bigio, “Wavelength-dependent backscattering measurements for quantitative real-time monitoring of apoptosis in living cells,” J. Biomed. Opt. 14(6), 064013 (2009). [CrossRef] [PubMed]
  10. Y. S. Fawzy, M. Petek, M. Tercelj, and H. S. Zeng, “In vivo assessment and evaluation of lung tissue morphologic and physiological changes from non-contact endoscopic reflectance spectroscopy for improving lung cancer detection,” J. Biomed. Opt. 11(4), 044003 (2006). [CrossRef] [PubMed]
  11. C. C. Yu, C. Lau, G. O’Donoghue, J. Mirkovic, S. McGee, L. Galindo, A. Elackattu, E. Stier, G. Grillone, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative spectroscopic imaging for non-invasive early cancer detection,” Opt. Express 16(20), 16227–16239 (2008). [CrossRef] [PubMed]
  12. R. B. Saager, D. J. Cuccia, and A. J. Durkin, “Determination of optical properties of turbid media spanning visible and near-infrared regimes via spatially modulated quantitative spectroscopy,” J. Biomed. Opt. 15(1), 017012 (2010). [CrossRef] [PubMed]
  13. S. C. Gebhart, S. K. Majumder, and A. Mahadevan-Jansen, “Comparison of spectral variation from spectroscopy to spectral imaging,” Appl. Opt. 46(8), 1343–1360 (2007). [CrossRef] [PubMed]
  14. L. L. Randeberg, O. A. Haugen, R. Haaverstad, and L. O. Svaasand, “A novel approach to age determination of traumatic injuries by reflectance spectroscopy,” Lasers Surg. Med. 38(4), 277–289 (2006). [CrossRef] [PubMed]
  15. W. G. Zijlstra, A. Buursma, and W. P. Meeuwsen-van der Roest, “Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin,” Clin. Chem. 37(9), 1633–1638 (1991). [PubMed]
  16. G. Zonios, L. T. Perelman, V. M. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, and M. S. Feld, “Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo,” Appl. Opt. 38(31), 6628–6637 (1999). [CrossRef] [PubMed]
  17. R. Reif, O. A’Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46(29), 7317–7328 (2007). [CrossRef] [PubMed]
  18. G. Zonios, I. Bassukas, and A. Dimou, “Comparative evaluation of two simple diffuse reflectance models for biological tissue applications,” Appl. Opt. 47(27), 4965–4973 (2008). [CrossRef] [PubMed]
  19. J. E. Phelps, K. Vishwanath, V. T. C. Chang, and N. Ramanujam, “Rapid ratiometric determination of hemoglobin concentration using UV-VIS diffuse reflectance at isosbestic wavelengths,” Opt. Express 18(18), 18779–18792 (2010). [CrossRef] [PubMed]
  20. N. Rajaram, T. H. Nguyen, and J. W. Tunnell, “Lookup table-based inverse model for determining optical properties of turbid media,” J. Biomed. Opt. 13(5), 050501–050503 (2008). [CrossRef] [PubMed]
  21. S. C. Kanick, H. J. Sterenborg, and A. Amelink, “Empirical model of the photon path length for a single fiber reflectance spectroscopy device,” Opt. Express 17(2), 860–871 (2009). [CrossRef] [PubMed]
  22. S. C. Kanick, H. J. Sterenborg, and A. Amelink, “Empirical model description of photon path length for differential path length spectroscopy: combined effect of scattering and absorption,” J. Biomed. Opt. 13(6), 064042 (2008). [CrossRef] [PubMed]
  23. S. E. Hernández, V. D. Rodríguez, J. Pérez, F. A. Martín, M. A. Castellano, and J. L. Gonzalez-Mora, “Diffuse reflectance spectroscopy characterization of hemoglobin and intralipid solutions: in vitro measurements with continuous variation of absorption and scattering,” J. Biomed. Opt. 14(3), 034026 (2009). [CrossRef] [PubMed]
  24. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991). [CrossRef] [PubMed]
  25. G. Zaccanti, S. Del Bianco, and F. Martelli, “Measurements of optical properties of high-density media,” Appl. Opt. 42(19), 4023–4030 (2003). [CrossRef] [PubMed]
  26. M. C. P. Van Beekvelt, W. N. J. M. Colier, R. A. Wevers, and B. G. M. Van Engelen, “Performance of near-infrared spectroscopy in measuring local O(2) consumption and blood flow in skeletal muscle,” J. Appl. Physiol. 90(2), 511–519 (2001). [PubMed]
  27. M. Friebel, J. Helfmann, U. Netz, and M. Meinke, “Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2,000 nm,” J. Biomed. Opt. 14(3), 034001 (2009). [CrossRef] [PubMed]
  28. A. Amelink, D. J. Robinson, and H. J. Sterenborg, “Confidence intervals on fit parameters derived from optical reflectance spectroscopy measurements,” J. Biomed. Opt. 13(5), 054044 (2008). [CrossRef] [PubMed]
  29. D. M. de Bruin, R. H. Bremmer, V. M. Kodach, R. de Kinkelder, J. van Marle, T. G. van Leeuwen, and D. J. Faber, “Optical phantoms of varying geometry based on thin building blocks with controlled optical properties,” J. Biomed. Opt. 15(2), 025001 (2010). [CrossRef] [PubMed]
  30. R. Reif, M. S. Amorosino, K. W. Calabro, O. A’Amar, S. K. Singh, and I. J. Bigio, “Analysis of changes in reflectance measurements on biological tissues subjected to different probe pressures,” J. Biomed. Opt. 13(1), 010502 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited