OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 3 — Mar. 1, 2011
  • pp: 440–451

Optical Tomography in weakly scattering media in the presence of highly scattering inclusions

Vadim Y. Soloviev and Simon R. Arridge  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 3, pp. 440-451 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1274 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We consider the problem of optical tomographic imaging in a weakly scattering medium in the presence of highly scattering inclusions. The approach is based on the assumption that the transport coefficient of the scattering media differs by an order of magnitude for weakly and highly scattering regions. This situation is common for optical imaging of live objects such an embryo. We present an approximation to the radiative transfer equation, which can be applied to this type of scattering case. Our approach was verified by reconstruction of two optical parameters from numerically simulated datasets.

© 2011 OSA

OCIS Codes
(170.0170) Medical optics and biotechnology : Medical optics and biotechnology
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(290.0290) Scattering : Scattering
(290.7050) Scattering : Turbid media

ToC Category:
Image Reconstruction and Inverse Problems

Original Manuscript: November 8, 2010
Manuscript Accepted: January 18, 2011
Published: January 31, 2011

Vadim Y. Soloviev and Simon R. Arridge, "Optical Tomography in weakly scattering media in the presence of highly scattering inclusions," Biomed. Opt. Express 2, 440-451 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. J. Shaw, D. A. Agard, Y. Hiraoka, and J. W. Sedat, “Tilted view reconstruction in optical microscopy. Three-dimensional reconstruction of Drosophila melanogaster embryo nuclei,” Biophys. J. 55(1), 101–110 (1989). [CrossRef] [PubMed]
  2. C. S. Brown, D. H. Burns, F. A. Spelman, and A. C. Nelson, “Computed tomography from optical projections for three-dimensional reconstruction of thick objects,” Appl. Opt. 31(29), 6247–6254 (1992). [CrossRef] [PubMed]
  3. J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296(5567), 541–545 (2002). [CrossRef] [PubMed]
  4. C. Vinegoni, C. Pitsouli, D. Razansky, N. Perrimon, and V. Ntziachristos, “In vivo imaging of Drosophila melanogaster pupae with mesoscopic fluorescence tomography,” Nat. Methods 5(1), 45–47 (2008). [CrossRef] [PubMed]
  5. M. Fauver, E. J. Seibel, J. R. Rahn, M. G. Meyer, F. W. Patten, T. Neumann, and A. C. Nelson, “Three-dimensional imaging of single isolated cell nuclei using optical projection tomography,” Opt. Express 13(11), 4210–4223 (2005). [CrossRef] [PubMed]
  6. J. McGinty, K. B. Tahir, R. Laine, C. B. Talbot, C. Dunsby, M. A. A. Neil, L. Quintana, J. Swoger, J. Sharpe, and P. M. W. French, “Fluorescence lifetime optical projection tomography,” J Biophotonics 1(5), 390–394 (2008). [CrossRef] [PubMed]
  7. A. Bassi, D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo, “Time-gated optical projection tomography,” Opt. Lett. 35(16), 2732–2734 (2010). [CrossRef] [PubMed]
  8. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995). [CrossRef] [PubMed]
  9. Q. Fang and D. A. Boas, “Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units,” Opt. Express 17(22), 20178–20190 (2009). [CrossRef] [PubMed]
  10. E. Alerstam, W. C. Yip Lo, T. D. Han, J. Rose, S. Andersson-Engels, and L. Lilge, “Next-generation acceleration and code optimization for light transport in turbid media using GPUs,” Biomed. Opt. Express 1(2), 658–675 (2010). [CrossRef] [PubMed]
  11. O. Dorn, “A transport-backtransport method for optical tomography,” Inverse Probl. 14(5), 1107–1130 (1998). [CrossRef]
  12. T. Tarvainen, M. Vauhkonen, and S. R. Arridge, “Gauss-Newton reconstruction method for optical tomography using the finite element solution of the radiative transfer equation,” J. Quant. Spectrosc. Radiat. Transf. 109(17-18), 2767–2778 (2008). [CrossRef]
  13. T. Tarvainen, M. Vauhkonen, V. Kolehmainen, and J. P. Kaipio, “Finite element model for the coupled radiative transfer equation and diffusion approximation,” Int. J. Numer. Methods Eng. 65(3), 383–405 (2006). [CrossRef]
  14. K. Ren, G. S. Abdoulaev, G. Bal, and A. H. Hielscher, “Algorithm for solving the equation of radiative transfer in the frequency domain,” Opt. Lett. 29(6), 578–580 (2004). [CrossRef] [PubMed]
  15. A. D. Klose, U. Netz, J. Beuthan, and A. H. Hielscher, “Optical tomography using the time-independent equation of radiative transfer - Part 1: forward model,” J. Quant. Spectrosc. Radiat. Transf. 72(5), 691–713 (2002). [CrossRef]
  16. A. D. Klose, V. Ntziachristos, and A. H. Hielscher, “The inverse source problem based on the radiative transfer equation in optical molecular imaging,” J. Comput. Phys. 202(1), 323–345 (2005). [CrossRef]
  17. G. Bal, “Radiative transfer equations with varying refractive index: a mathematical perspective,” J. Opt. Soc. Am. A 23(7), 1639–1644 (2006). [CrossRef] [PubMed]
  18. L. Florescu, J. C. Schotland, and V. A. Markel, “Single-scattering optical tomography,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79(3), 036607 (2009). [CrossRef] [PubMed]
  19. L. Florescu, J. C. Schotland, and V. A. Markel, “Single-scattering optical tomography: simultaneous reconstruction of scattering and absorption,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(1), 016602 (2010). [CrossRef] [PubMed]
  20. V. V. Sobolev, A Treatise on Radiative Transfer (D. Van Nostrand Company, Inc., 1963).
  21. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15(2), R41 (1999). [CrossRef]
  22. S. R. Arridge and J. Schotland, “Optical tomography: forward and inverse problems,” Inverse Probl. 25(12), 123010 (2009). [CrossRef]
  23. R. L. Siddon, “Fast calculation of the exact radiological path for a three-dimensional CT array,” Med. Phys. 12(2), 252–255 (1985). [CrossRef] [PubMed]
  24. S. R. Deans, The Radon Transform and some of its applications, (Dover Publications, 2007).
  25. O. Tretiak and C. Metz, “The exponential Radon transform,” SIAM J. Appl. Math. 39(2), 341–354 (1980). [CrossRef]
  26. F. Natterer, “On the inversion of the attenuated Radon transform,” Numer. Math. 32(4), 431–438 (1979). [CrossRef]
  27. F. Natterer, “Inversion of the attenuated Radon transform,” Inverse Probl. 17(1), 113–119 (2001). [CrossRef]
  28. D. V. Finch, “The attenuated X-Ray transforms: recent developments,” Inverse Probl. 47, 47–66 (2003).
  29. J. Nocedal, and S. J. Wright, Numerical Optimization, (Springer-Verlag Inc., 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (3964 KB)     
» Media 2: AVI (3390 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited