OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 3 — Mar. 1, 2011
  • pp: 452–463

Measurement of ocular aberrations in downward gaze using a modified clinical aberrometer

Atanu Ghosh, Michael J Collins, Scott A Read, Brett A Davis, and D. Robert Iskander  »View Author Affiliations


Biomedical Optics Express, Vol. 2, Issue 3, pp. 452-463 (2011)
http://dx.doi.org/10.1364/BOE.2.000452


View Full Text Article

Enhanced HTML    Acrobat PDF (1351 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Changes in corneal optics have been measured after downward gaze. However, ocular aberrations during downward gaze have not been previously measured. A commercial Shack-Hartmann aberrometer (COAS-HD) was modified by adding a relay lens system and a rotatable beam splitter to allow on-axis aberration measurements in primary gaze and downward gaze with binocular fixation. Measurements with the modified aberrometer (COAS-HD relay system) in primary and downward gaze were validated against a conventional aberrometer. In human eyes, there were significant changes (p<0.05) in defocus C(2,0), primary astigmatism C(2,2) and vertical coma C(3,−1) in downward gaze (25 degrees) compared to primary gaze, indicating the potential influence of biomechanical forces on the optics of the eye in downward gaze. To demonstrate a further clinical application of this modified aberrometer, we measured ocular aberrations when wearing a progressive addition lens (PAL) in primary gaze (0 degree), 15 degrees downward gaze and 25 degrees downward gaze.

© 2011 OSA

OCIS Codes
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.5370) Vision, color, and visual optics : Physiological optics
(330.7327) Vision, color, and visual optics : Visual optics, ophthalmic instrumentation

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: December 1, 2010
Revised Manuscript: January 25, 2011
Manuscript Accepted: January 26, 2011
Published: February 1, 2011

Citation
Atanu Ghosh, Michael J Collins, Scott A Read, Brett A Davis, and D. Robert Iskander, "Measurement of ocular aberrations in downward gaze using a modified clinical aberrometer," Biomed. Opt. Express 2, 452-463 (2011)
http://www.opticsinfobase.org/boe/abstract.cfm?URI=boe-2-3-452


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. C. Howland and B. Howland, “A subjective method for the measurement of monochromatic aberrations of the eye,” J. Opt. Soc. Am. 67(11), 1508–1518 (1977). [CrossRef] [PubMed]
  2. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11(7), 1949–1957 (1994). [CrossRef] [PubMed]
  3. L. N. Thibos and X. Hong, “Clinical applications of the Shack-Hartmann aberrometer,” Optom. Vis. Sci. 76(12), 817–825 (1999). [CrossRef] [PubMed]
  4. J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14(11), 2873–2883 (1997). [CrossRef] [PubMed]
  5. X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003). [CrossRef] [PubMed]
  6. P. Prado, J. Arines, S. Bará, S. Manzanera, A. Mira-Agudelo, and P. Artal, “Changes of ocular aberrations with gaze,” Ophthalmic Physiol. Opt. 29(3), 264–271 (2009). [CrossRef] [PubMed]
  7. H. Radhakrishnan and W. N. Charman, “Refractive changes associated with oblique viewing and reading in myopes and emmetropes,” J. Vis. 7(8), 5–15 (2007). [CrossRef] [PubMed]
  8. A. Mathur, D. A. Atchison, S. Kasthurirangan, N. A. Dietz, S. Luong, S. P. Chin, W. L. Lin, and S. W. Hoo, “The influence of oblique viewing on axial and peripheral refraction for emmetropes and myopes,” Ophthalmic Physiol. Opt. 29(2), 155–161 (2009). [CrossRef] [PubMed]
  9. T. Buehren, M. J. Collins, and L. Carney, “Corneal aberrations and reading,” Optom. Vis. Sci. 80(2), 159–166 (2003). [CrossRef] [PubMed]
  10. D. Mok, A. Ro, W. Cadera, J. D. Crawford, and T. Vilis, “Rotation of Listing’s plane during vergence,” Vision Res. 32(11), 2055–2064 (1992). [CrossRef] [PubMed]
  11. M. J. Tjon-Fo-Sang, J. T. de Faber, C. Kingma, and W. H. Beekhuis, “Cyclotorsion: a possible cause of residual astigmatism in refractive surgery,” J. Cataract Refract. Surg. 28(4), 599–602 (2002). [CrossRef] [PubMed]
  12. A. Glasser and P. L. Kaufman, “The mechanism of accommodation in primates,” Ophthalmology 106(5), 863–872 (1999). [CrossRef] [PubMed]
  13. H. Kasprzak and B. K. Pierscionek, “Modelling the gravitational sag of the cornea and the subsequent quality of the refracted image,” J. Mod. Opt. 49(13), 2153–2166 (2002). [CrossRef]
  14. A. J. Shaw, M. J. Collins, B. A. Davis, and L. G. Carney, “Corneal refractive changes due to short-term eyelid pressure in downward gaze,” J. Cataract Refract. Surg. 34(9), 1546–1553 (2008). [CrossRef] [PubMed]
  15. A. J. Shaw, M. J. Collins, B. A. Davis, and L. G. Carney, “Eyelid pressure: inferences from corneal topographic changes,” Cornea 28(2), 181–188 (2009). [CrossRef] [PubMed]
  16. M. J. Collins, T. Buehren, A. Bece, and S. C. Voetz, “Corneal optics after reading, microscopy and computer work,” Acta Ophthalmol. Scand. 84(2), 216–224 (2006). [CrossRef] [PubMed]
  17. M. Collins, B. Davis, and J. Wood, “Microfluctuations of steady-state accommodation and the cardiopulmonary system,” Vision Res. 35(17), 2491–2502 (1995). [PubMed]
  18. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Report from the VSIA taskforce on standards for reporting optical aberrations of the eye,” J. Refract. Surg. 16(5), S654–S655 (2000). [PubMed]
  19. J. Schwiegerling, “Scaling Zernike expansion coefficients to different pupil sizes,” J. Opt. Soc. Am. A 19(10), 1937–1945 (2002). [CrossRef] [PubMed]
  20. D. R. Iskander, M. J. Collins, M. R. Morelande, and M. Zhu, “Analyzing the dynamic wavefront aberrations in the human eye,” IEEE Trans. Biomed. Eng. 51(11), 1969–1980 (2004). [CrossRef] [PubMed]
  21. M. G. Doane, “Interactions of eyelids and tears in corneal wetting and the dynamics of the normal human eyeblink,” Am. J. Ophthalmol. 89(4), 507–516 (1980). [PubMed]
  22. L. Lundström and P. Unsbo, “Transformation of Zernike coefficients: scaled, translated, and rotated wavefronts with circular and elliptical pupils,” J. Opt. Soc. Am. A 24(3), 569–577 (2007). [CrossRef] [PubMed]
  23. D. R. Iskander, B. A. Davis, M. J. Collins, and R. Franklin, “Objective refraction from monochromatic wavefront aberrations via Zernike power polynomials,” Ophthalmic Physiol. Opt. 27(3), 245–255 (2007). [CrossRef] [PubMed]
  24. X. Cheng, A. Bradley, and L. N. Thibos, “Predicting subjective judgment of best focus with objective image quality metrics,” J. Vis. 4(4), 7–18 (2004). [CrossRef] [PubMed]
  25. D. R. Iskander, “Computational aspects of the visual Strehl ratio,” Optom. Vis. Sci. 83(1), 57–59 (2006). [CrossRef] [PubMed]
  26. E. A. Villegas and P. Artal, “Spatially resolved wavefront aberrations of ophthalmic progressive-power lenses in normal viewing conditions,” Optom. Vis. Sci. 80(2), 106–114 (2003). [CrossRef] [PubMed]
  27. E. A. Villegas and P. Artal, “Comparison of aberrations in different types of progressive power lenses,” Ophthalmic Physiol. Opt. 24(5), 419–426 (2004). [CrossRef] [PubMed]
  28. C. Castellini, F. Francini, and B. Tiribilli, “Hartmann test modification for measuring ophthalmic progressive lenses,” Appl. Opt. 33(19), 4120–4124 (1994). [CrossRef] [PubMed]
  29. C. W. Fowler and C. M. Sullivan, “A comparison of three methods for the measurement of progressive addition lenses,” Ophthalmic Physiol. Opt. 9(1), 81–85 (1989). [CrossRef] [PubMed]
  30. T. Spiers and C. C. Hull, “Optical Fourier filtering for whole lens assessment of progressive power lenses,” Ophthalmic Physiol. Opt. 20(4), 281–289 (2000). [CrossRef] [PubMed]
  31. T. W. Raasch, L. Su, and A. Yi, “Whole-surface characterization of progressive addition lenses,” Optom. Vis. Sci. 88(2), E217–E226 (2011). [CrossRef] [PubMed]
  32. B. Bourdoncle, J. P. Chauveau, and J. L. Mercier, “Traps in displaying optical performances of a progressive-addition lens,” Appl. Opt. 31(19), 3586–3593 (1992). [CrossRef] [PubMed]
  33. R. Blendowske, E. A. Villegas, and P. Artal, “An analytical model describing aberrations in the progression corridor of progressive addition lenses,” Optom. Vis. Sci. 83(9), 666–671 (2006). [CrossRef] [PubMed]
  34. D. Volk and J. W. Weinberg, “The omnifocal lens for presbyopia,” Arch. Ophthalmol. 68, 776–784 (1962). [PubMed]
  35. G. Minkwitz, “On the surface astigmatism of a fixed symmetrical aspheric surface,” Opt. Acta (Lond.) 10, 223–227 (1963). [PubMed]
  36. R. McIlraith, G. Young, and C. Hunt, “Toric lens orientation and visual acuity in non-standard conditions,” Cont. Lens Anterior Eye 33(1), 23–26 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited