OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 3 — Mar. 1, 2011
  • pp: 464–470

Multifractal nature of ocular aberration dynamics of the human eye

Karen M. Hampson and Edward A. H. Mallen  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 3, pp. 464-470 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (1103 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Ocular monochromatic aberrations display dynamic behavior even when the eye is fixating on a stationary stimulus. The fluctuations are commonly characterized in the frequency domain using the power spectrum obtained via the Fourier transform. In this paper we used a wavelet-based multifractal analytical approach to provide a more in depth analysis of the nature of the aberration fluctuations. The aberrations of five subjects were measured at 21 Hz using an open-view Shack-Hartmann sensor. We show that the aberration dynamics are multifractal. The most frequently occurring Hölder exponent for the rms wavefront error, averaged across the five subjects, was 0.31 ± 0.10. This suggests that the time course of the aberration fluctuations is antipersistant. Future applications of multifractal analysis are discussed.

© 2011 OSA

OCIS Codes
(330.4875) Vision, color, and visual optics : Optics of physiological systems
(330.7326) Vision, color, and visual optics : Visual optics, modeling

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: November 12, 2010
Revised Manuscript: January 18, 2011
Manuscript Accepted: January 26, 2011
Published: February 1, 2011

Karen M. Hampson and Edward A. H. Mallen, "Multifractal nature of ocular aberration dynamics of the human eye," Biomed. Opt. Express 2, 464-470 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, “Dynamics of the eye’s wave aberration,” J. Opt. Soc. Am. A 18(3), 497–506 (2001). [CrossRef] [PubMed]
  2. L. Diaz-Santana, C. Torti, I. Munro, P. Gasson, and C. Dainty, “Benefit of higher closed-loop bandwidths in ocular adaptive optics,” Opt. Express 11(20), 2597–2605 (2003). [CrossRef] [PubMed]
  3. T. Nirmaier, G. Pudasaini, and J. Bille, “Very fast wave-front measurements at the human eye with a custom CMOS-based Hartmann-Shack sensor,” Opt. Express 11(21), 2704–2716 (2003). [CrossRef] [PubMed]
  4. S. S. Chin, K. M. Hampson, and E. A. H. Mallen, “Binocular correlation of ocular aberration dynamics,” Opt. Express 16(19), 14731–14745 (2008). [CrossRef] [PubMed]
  5. A. Mira-Agudelo, L. Lundström, and P. Artal, “Temporal dynamics of ocular aberrations: monocular vs binocular vision,” Ophthalmic Physiol. Opt. 29(3), 256–263 (2009). [CrossRef] [PubMed]
  6. A. Eke, P. Herman, L. Kocsis, and L. R. Kozak, “Fractal characterization of complexity in temporal physiological signals,” Physiol. Meas. 23(1), R1 (2002). [CrossRef] [PubMed]
  7. P. C. Ivanov, L. A. Amaral, A. L. Goldberger, S. Havlin, M. G. Rosenblum, Z. R. Struzik, and H. E. Stanley, “Multifractality in human heartbeat dynamics,” Nature 399(6735), 461–465 (1999). [CrossRef] [PubMed]
  8. P. C. Ivanov, L. A. Nunes Amaral, A. L. Goldberger, S. Havlin, M. G. Rosenblum, H. E. Stanley, and Z. R. Struzik, “From 1/f noise to multifractal cascades in heartbeat dynamics,” Chaos 11(3), 641–652 (2001). [CrossRef] [PubMed]
  9. D. C. Lin and A. Sharif, “Common multifractality in the heart rate variability and brain activity of healthy humans,” Chaos 20(2), 023121 (2010). [CrossRef] [PubMed]
  10. A. L. Goldberger, L. A. N. Amaral, J. M. Hausdorff, P. Ch. Ivanov, C.-K. Peng, and H. E. Stanley, “Fractal dynamics in physiology: alterations with disease and aging,” Proc. Natl. Acad. Sci. U.S.A. 99(90001Suppl 1), 2466–2472 (2002). [CrossRef] [PubMed]
  11. C. D. Cutler, “A review of the theory and estimation of fractal dimension,” in Dimension Estimation and Models, H. Tong, ed. (World Scientific Publishing Co Pte Ltd, 1993).
  12. P. S. Addison, The Illustrated Wavelet Transform Handbook (Taylor and Francis, 2002).
  13. M. Zhu, M. J. Collins, and D. Robert Iskander, “Microfluctuations of wavefront aberrations of the eye,” Ophthalmic Physiol. Opt. 24(6), 562–571 (2004). [CrossRef] [PubMed]
  14. K. M. Hampson, I. Munro, C. Paterson, and C. Dainty, “Weak correlation between the aberration dynamics of the human eye and the cardiopulmonary system,” J. Opt. Soc. Am. A 22(7), 1241–1250 (2005). [CrossRef] [PubMed]
  15. M. Muma, D. R. Iskander, and M. J. Collins, “The role of cardiopulmonary signals in the dynamics of the eye’s wavefront aberrations,” IEEE Trans. Biomed. Eng. 57(2), 373–383 (2010). [CrossRef] [PubMed]
  16. K. M. Hampson, S. S. Chin, and E. A. H. Mallen, “Binocular Shack-Hartmann sensor for the human eye,” J. Mod. Opt. 55(4), 703–716 (2008). [CrossRef]
  17. K. M. Hampson, S. S. Chin, and E. A. H. Mallen, “Dual wavefront sensing channel monocular adaptive optics system for accommodation studies,” Opt. Express 17(20), 18229–18240 (2009). [CrossRef] [PubMed]
  18. L. N. Thibos, R. A. Applegate, J. T. Schwiegerling, and R. Webb, “Standards for reporting the optical aberrations of eyes,” Refract. Surg. 18, 652–660 (2002).
  19. A. Arneodo, E. Bacry, and J. Muzy, “The thermodynamics of fractals revisited with wavelets,” Physica A 213(1-2), 232–275 (1995). [CrossRef]
  20. P. Shang, Y. Lu, and S. Kama, “The application of Hölder exponent to traffic congestion warning,” Physica A 370(2), 769–776 (2006). [CrossRef]
  21. B. Enescu, K. Ito, and Z. R. Struzik, “Wavelet-based multiscale resolution analysis of real and simulated time-series earthquakes,” Geophys. J. Int. 164(1), 63–74 (2006). [CrossRef]
  22. J. C. Van den Berg, Wavelets in Physics (Cambridge University Press, 2004).
  23. R. T. J. McAteer, C. A. Young, J. Ireland, and P. T. Gallagher, “The bursty nature of solar flare x-ray emission,” Astron. J. 662, 691–700 (2007).
  24. M. Özger, “Investigating the properties of significant wave height time series using a wavelet based approach,” J. Waterw. Port Coast. Ocean Eng. 137(1), 34–42 (2011). [CrossRef]
  25. J. A. Piñuela, D. Andina, K. J. McInnes, and A. M. Tarquis, “Wavelet analysis in a structured clay soil using 2-D images,” Nonlin. Processes 18, 21386–21396 (2007).
  26. B. Telfer and H. H. Szu, “New wavelet transform normalization to remove frequency bias,” Opt. Eng. 31(9), 1830–1834 (1992). [CrossRef]
  27. C. Torrence and G. P. Compo, “A practical guide to wavelet analysis,” Bull. Am. Met. Soc. 79(1), 61–78 (1998). [CrossRef]
  28. S. Mallat and W. L. Hwang, “Singularity detection and processing using wavelets,” IEEE Trans. Inf. Theory 18, 2668–2681 (2010).
  29. S. Mallat, A Wavelet Tour of Signal Processing: the Sparse Way (Academic Press, 2009).
  30. D. R. Iskander, M. J. Collins, M. R. Morelande, and M. Zhu, “Analyzing the dynamic wavefront aberrations in the human eye,” IEEE Trans. Biomed. Eng. 51(11), 1969–1980 (2004). [CrossRef] [PubMed]
  31. C. Leahy and C. Dainty, “A non-stationary model for simulating the dynamics of ocular aberrations,” Opt. Express 18(20), 21386–21396 (2010). [CrossRef] [PubMed]
  32. C. Leahy, C. Leroux, C. Dainty, and L. Diaz-Santana, “Temporal dynamics and statistical characteristics of the microfluctuations of accommodation: dependence on the mean accommodative effort,” Opt. Express 18(3), 2668–2681 (2010). [CrossRef] [PubMed]
  33. L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4), 9 (2004). [CrossRef] [PubMed]
  34. K. M. Hampson, E. A. H. Mallen, and C. Dainty, “Coherence function analysis of the higher-order aberrations of the human eye,” Opt. Lett. 31(2), 184–186 (2006). [CrossRef] [PubMed]
  35. L. Diaz-Santana, V. Guériaux, G. Arden, and S. Gruppetta, “New methodology to measure the dynamics of ocular wave front aberrations during small amplitude changes of accommodation,” Opt. Express 15(9), 5649–5663 (2007). [CrossRef] [PubMed]
  36. K. M. Hampson, “Adaptive optics and vision,” J. Mod. Opt. 55(21), 3425–3467 (2008). [CrossRef]
  37. D. Seidel, L. S. Gray, and G. Heron, “Retinotopic accommodation responses in myopia,” Invest. Ophthalmol. Vis. Sci. 44(3), 1035–1041 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited