OSA's Digital Library

Biomedical Optics Express

Biomedical Optics Express

  • Editor: Joseph A. Izatt
  • Vol. 2, Iss. 3 — Mar. 1, 2011
  • pp: 478–484

A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing

Yongbin Lin, Yang Zou, and Robert G. Lindquist  »View Author Affiliations

Biomedical Optics Express, Vol. 2, Issue 3, pp. 478-484 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (927 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the fabrication and characterization of an optical fiber biochemical sensing probe based on localized surface plasmon resonance (LSPR) and spectra reflection. Ordered array of gold nanodots was fabricated on the optical fiber end facet using electron-beam lithography (EBL). We experimentally demonstrated for the first time the blue shift of the LSPR scattering spectrum with respected to the LSPR extinction spectrum, which had been predicted theoretically. High sensitivity [195.72 nm/refractive index unit (RIU)] of this sensor for detecting changes in the bulk refractive indices has been demonstrated. The label-free affinity bio-molecules sensing capability has also been demonstrated using biotin and streptavidin as the receptor and the analyte.

© 2011 OSA

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Biosensors and Molecular Diagnostics

Original Manuscript: December 7, 2010
Revised Manuscript: January 14, 2011
Manuscript Accepted: January 28, 2011
Published: February 1, 2011

Yongbin Lin, Yang Zou, and Robert G. Lindquist, "A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing," Biomed. Opt. Express 2, 478-484 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999). [CrossRef]
  2. W. Knoll, “Interfaces and thin films as seen by bound electromagnetic waves,” Annu. Rev. Phys. Chem. 49(1), 569–638 (1998). [CrossRef] [PubMed]
  3. S. Underwood and P. Mulvaney, “Effect of the Solution Refractive Index on the Color of Gold Colloids,” Langmuir 10(10), 3427–3430 (1994). [CrossRef]
  4. A. C. Templeton, J. J. Pietron, R. W. Murray, and P. Mulvaney, “Solvent Refractive Index and Core Charge Influences on the Surface Plasmon Absorbance of Alkanethiolate Monolayer-Protected Gold Clusters,” J. Phys. Chem. B 104(3), 564–570 (2000). [CrossRef]
  5. C. L. Haynes and R. P. Van Duyne, “Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001). [CrossRef]
  6. J. Sung, E. M. Hicks, R. P. Van Duyne, and K. G. Spears, “Nanoparticle Spectroscopy: Dipole Coupling in Two-Dimensional Arrays of L-Shaped Silver Nanoparticles,” J. Phys. Chem. C 111(28), 10368–10376 (2007). [CrossRef]
  7. J. Prikulis, P. Hanarp, L. Olofsson, D. Sutherland, and M. Käll, “Optical Spectroscopy of Nanometric Holes in Thin Gold Films,” Nano Lett. 4(6), 1003–1007 (2004). [CrossRef]
  8. D. Gao, W. Chen, A. Mulchandani, and J. S. Schultz, “Detection of tumor markers based on extinction spectra of visible light passing through gold nanoholes,” Appl. Phys. Lett. 90(7), 073901 (2007). [CrossRef]
  9. A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc. 127(14), 5043–5048 (2005). [CrossRef] [PubMed]
  10. K. Mitsui, Y. Handa, and K. Kajikawa, “Optical fiber affinity biosensor based on localized surface plasmon resonance,” Appl. Phys. Lett. 85(18), 4231 (2004). [CrossRef]
  11. Y. J. Chang, Y. C. Chen, H. L. Kuo, and P. K. Wei, “Nanofiber optic sensor based on the excitation of surface plasmon wave near fiber tip,” J. Biomed. Opt. 11(1), 014032 (2006). [CrossRef] [PubMed]
  12. C. Gu, Y. Zhang, A. M. Schwartzberg, and J. Z. Zhang, “Ultra-sensitive compact fiber sensor based on nanoparticle surface enhanced Raman scattering,” Proc. SPIE 5911, 591108, 591108-66 (2005). [CrossRef]
  13. A. Dhawan, M. D. Gerhold, and J. F. Muth, “Plasmonic Structures Based on Subwavelength Apertures for Chemical and Biological Sensing Applications,” IEEE Sens. J. 8(6), 942–950 (2008). [CrossRef]
  14. A. Dhawan, J. F. Muth, D. N. Leonard, M. D. Gerhold, J. Gleeson, T. Vo-Dinh, and P. E. Russell, “Focused ion beam fabrication of metallic nanostructures on end faces of optical fibers for chemical sensing applications,” J. Vac. Sci. Technol. B 26(6), 2168 (2008). [CrossRef]
  15. Y. Lin, Y. Zou, Y. Mo, J. Guo, and R. G. Lindquist, “E-Beam Patterned Gold Nanodot Arrays on Optical Fiber Tips for Localized Surface Plasmon Resonance Biochemical Sensing,” Sensors (Basel Switzerland) 10(10), 9397–9406 (2010). [CrossRef]
  16. P. M. Gouvêa, I. C. Carvalho, H. Jang, M. Cremona, A. M. Braga, and M. Fokine, “Characterization of a Fiber Optic Sensor Based on LSPR and Specular Reflection,” in Optical Sensors, OSA Technical Digest (CD) (Optical Society of America, 2010), paper STuA4.
  17. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006). [CrossRef] [PubMed]
  18. G. Barbillon, J. L. Bijeon, J. Plain, M. L. de la Chapelle, P. M. Adam, and P. Royer, “Biological and Chemical Gold Nanosensors Based on Localized Surface Plasmon Resonance,” Gold Bull. 40, 240–244 (2007).
  19. A. S. Yeri, L. Gao, and D. Gao, “Mutation screening based on the mechanical properties of DNA molecules tethered to a solid surface,” J. Phys. Chem. B 114(2), 1064–1068 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited